本篇文章主要介绍了详解pytorch批训练及优化器比较,详细的介绍了什么是pytorch批训练和pytorch的optimizer优化器,非常具有实用价值,需要的朋友可以参考下
一、pytorch批训练
1. 概述
pytorch提供了一种将数据包装起来进行批训练的工具——dataloader。使用的时候,只需要将我们的数据首先转换为torch的tensor形式,再转换成torch可以识别的dataset格式,然后将dataset放入dataloader中就可以啦。
import torch
import torch.utils.data as data
torch.manual_seed(1) # 设定随机数种子
batch_size = 5
x = torch.linspace(1, 10, 10)
y = torch.linspace(0.5, 5, 10)
# 将数据转换为torch的dataset格式
torch_dataset = data.tensordataset(data_tensor=x, target_tensor=y)
# 将torch_dataset置入dataloader中
loader = data.dataloader(
dataset=torch_dataset,
batch_size=batch_size, # 批大小
# 若dataset中的样本数不能被batch_size整除的话,最后剩余多少就使用多少
shuffle=true, # 是否随机打乱顺序
num_workers=2, # 多线程读取数据的线程数
)
for epoch in range(3):
for step, (batch_x, batch_y) in enumerate(loader):
print('epoch:', epoch, '|step:', step, '|batch_x:',
batch_x.numpy(), '|batch_y', batch_y.numpy())
'''''
shuffle=true
epoch: 0 |step: 0 |batch_x: [ 6. 7. 2. 3. 1.] |batch_y [ 3. 3.5 1. 1.5 0.5]
epoch: 0 |step: 1 |batch_x: [ 9. 10. 4. 8. 5.] |batch_y [ 4.5 5. 2. 4. 2.5]
epoch: 1 |step: 0 |batch_x: [ 3. 4. 2. 9. 10.] |batch_y [ 1.5 2. 1. 4.5 5. ]
epoch: 1 |step: 1 |batch_x: [ 1. 7. 8. 5. 6.] |batch_y [ 0.5 3.5 4. 2.5 3. ]
epoch: 2 |step: 0 |batch_x: [ 3. 9. 2. 6. 7.] |batch_y [ 1.5 4.5 1. 3. 3.5]
epoch: 2 |step: 1 |batch_x: [ 10. 4. 8. 1. 5.] |batch_y [ 5. 2. 4. 0.5 2.5]
shuffle=false
epoch: 0 |step: 0 |batch_x: [ 1. 2. 3. 4. 5.] |batch_y [ 0.5 1. 1.5 2. 2.5]
epoch: 0 |step: 1 |batch_x: [ 6. 7. 8. 9. 10.] |batch_y [ 3. 3.5 4. 4.5 5. ]
epoch: 1 |step: 0 |batch_x: [ 1. 2. 3. 4. 5.] |batch_y [ 0.5 1. 1.5 2. 2.5]
epoch: 1 |step: 1 |batch_x: [ 6. 7. 8. 9. 10.] |batch_y [ 3. 3.5 4. 4.5 5. ]
epoch: 2 |step: 0 |batch_x: [ 1. 2. 3. 4. 5.] |batch_y [ 0.5 1. 1.5 2. 2.5]
epoch: 2 |step: 1 |batch_x: [ 6. 7. 8. 9. 10.] |batch_y [ 3. 3.5 4. 4.5 5. ]
'''
2. tensordataset
classtorch.utils.data.tensordataset(data_tensor, target_tensor)
tensordataset类用来将样本及其标签打包成torch的dataset,data_tensor,和target_tensor都是tensor。
3. dataloader
复制代码 代码如下:
classtorch.utils.data.dataloader(dataset, batch_size=1, shuffle=false, sampler=none,num_workers=0, collate_fn=<function default_collate>, pin_memory=false,drop_last=false)
dataset就是torch的dataset格式的对象;batch_size即每批训练的样本数量,默认为;shuffle表示是否需要随机取样本;num_workers表示读取样本的线程数。
二、pytorch的optimizer优化器
本实验中,首先构造一组数据集,转换格式并置于dataloader中,备用。定义一个固定结构的默认神经网络,然后为每个优化器构建一个神经网络,每个神经网络的区别仅仅是优化器不同。通过记录训练过程中的loss值,最后在图像上呈现得到各个优化器的优化过程。
代码实现:
import torch
import torch.utils.data as data
import torch.nn.functional as f
from torch.autograd import variable
import matplotlib.pyplot as plt
torch.manual_seed(1) # 设定随机数种子
# 定义超参数
lr = 0.01 # 学习率
batch_size = 32 # 批大小
epoch = 12 # 迭代次数
x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)
y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))
#plt.scatter(x.numpy(), y.numpy())
#plt.show()
# 将数据转换为torch的dataset格式
torch_dataset = data.tensordataset(data_tensor=x, target_tensor=y)
# 将torch_dataset置入dataloader中
loader = data.dataloader(dataset=torch_dataset, batch_size=batch_size,
shuffle=true, num_workers=2)
class net(torch.nn.module):
def __init__(self):
super(net, self).__init__()
self.hidden = torch.nn.linear(1, 20)
self.predict = torch.nn.linear(20, 1)
def forward(self, x):
x = f.relu(self.hidden(x))
x = self.predict(x)
return x
# 为每个优化器创建一个net
net_sgd = net()
net_momentum = net()
net_rmsprop = net()
net_adam = net()
nets = [net_sgd, net_momentum, net_rmsprop, net_adam]
# 初始化优化器
opt_sgd = torch.optim.sgd(net_sgd.parameters(), lr=lr)
opt_momentum = torch.optim.sgd(net_momentum.parameters(), lr=lr, momentum=0.8)
opt_rmsprop = torch.optim.rmsprop(net_rmsprop.parameters(), lr=lr, alpha=0.9)
opt_adam = torch.optim.adam(net_adam.parameters(), lr=lr, betas=(0.9, 0.99))
optimizers = [opt_sgd, opt_momentum, opt_rmsprop, opt_adam]
# 定义损失函数
loss_function = torch.nn.mseloss()
losses_history = [[], [], [], []] # 记录training时不同神经网络的loss值
for epoch in range(epoch):
print('epoch:', epoch + 1, 'training...')
for step, (batch_x, batch_y) in enumerate(loader):
b_x = variable(batch_x)
b_y = variable(batch_y)
for net, opt, l_his in zip(nets, optimizers, losses_history):
output = net(b_x)
loss = loss_function(output, b_y)
opt.zero_grad()
loss.backward()
opt.step()
l_his.append(loss.data[0])
labels = ['sgd', 'momentum', 'rmsprop', 'adam']
for i, l_his in enumerate(losses_history):
plt.plot(l_his, label=labels[i])
plt.legend(loc='best')
plt.xlabel('steps')
plt.ylabel('loss')
plt.ylim((0, 0.2))
plt.show()
实验结果:
由实验结果可见,sgd的优化效果是最差的,速度很慢;作为sgd的改良版本,momentum表现就好许多;相比rmsprop和adam的优化速度就非常好。实验中,针对不同的优化问题,比较各个优化器的效果再来决定使用哪个。
三、其他补充
1. python的zip函数
zip函数接受任意多个(包括0个和1个)序列作为参数,返回一个tuple列表。
x = [1, 2, 3]
y = [4, 5, 6]
z = [7, 8, 9]
xyz = zip(x, y, z)
print xyz
[(1, 4, 7), (2, 5, 8), (3, 6, 9)]
x = [1, 2, 3]
x = zip(x)
print x
[(1,), (2,), (3,)]
x = [1, 2, 3]
y = [4, 5, 6, 7]
xy = zip(x, y)
print xy
[(1, 4), (2, 5), (3, 6)]
相关推荐:
pytorch入门之mnist分类实例
以上就是详解pytorch批训练及优化器比较的详细内容。