您好,欢迎访问一九零五行业门户网

记录 慢SQL优化实战

sql教程介绍sql慢查询的优化
推荐(免费):sql教程
一、存在问题
经过sql慢查询的优化,我们系统中发现了以下几种类型的问题:
1.未建索引:整张表没有建索引;2.索引未命中:有索引,但是部分查询条件下索引未命中;3.搜索了额外的非必要字段,导致回表;4.排序,聚合导致慢查询;5.相同内容多次查询数据库;6.未消限制搜索范围或者限制的搜索范围在预期之外,导致全部扫描;
二、解决方案
1.优化索引,增加或者修改当前的索引;         2.重写sql;3.利用redis缓存,减少查询次数;4.增加条件,避免非必要查询;5.增加条件,减少查询范围;
三、案例分析
(一)药材搜索接口
完整sql语句在附录,为方便阅读和脱敏,部分常用字段采用中文。
这儿主要讲一下我们拿到sql语句后的整个分析过程,思考逻辑,然后进行调整的过程和最后解决的办法。
给大家提供一些借鉴,也希望大家能够提出更好的建议。
这个sql语句要求是根据医生搜索的拼音或者中文,进行模糊查询,找到药材,然后根据医生选择的药库,查找下面的供应商,然后根据供应商,进行药材匹配,排除掉供应商没有的药材,然后根据真名在前,别名在后,完全匹配在前,部分匹配在后,附加医生最近半年的使用习惯,把药材排序出来。最后把不同名称的同一味药聚合起来,以真名(另名)的形式展现。
1.分析sql
(1)14-8第14排,id为8的explain结果分析:
①explain8,derived,ssof,range,ix_district,ix_供应商id,ix_district,8,null,18,using where; using index; using temporary
②sqlselect distinct (ssof.供应商id) as 供应商id from  药库供应商关系表 as ssof  where ssof.药库id in (  1, 2, 8, 9, 10, 11, 12, 13, 14, 15, 17, 22, 24, 25, 26, 27, 31, 33)  and ssof.药方剂型id in (1)
③索引primary key (`id`),    unique key `ix_district` (        `药库id`, `药方剂型id`, `供应商id`    ) using btree,key `ix_供应商id` (`供应商id`) using btree
④分析使用了索引,建立了临时表,这个地方索引已经完全覆盖了,但是还有回表操作。
原因是用in,这个导致了回表。如果in可以被mysql 自动优化为等于,就不会回表。如果无法优化,就回表。
临时表是因为有distinct,所以无法避免。
同时使用in需要注意,如果里面的值数量比较多,有几万个。即使区分度高,就会导致索引失效,这种情况需要多次分批查询。
2. 12-7
(1)explain7,derived,<derived8>,all,null,null,null,null,18,using temporary; using filesort
(2)sqlinner join (上面14-8临时表) tp on tp.供应商id= ms.供应商id
(3)索引无
(4)分析对临时表操作,无索引,用了文件排序。
这一部分是对临时表和药材表进行关联操作的一部分,有文件排序是因为需要对药材表id进行group by 导致的。
1、默认情况下,mysql在使用group by之后,会产生临时表,而后进行排序(此处排序默认是快排),这会消耗的性能。
2、group by本质是先分组后排序【而不是先排序后分组】。
3、group by column 默认会按照column分组, 然后根据column升序排列;  group by column order by null 则默认按照column分组,然后根据标的主键id升序排列。
3. 13-7
(1)explain7,derived,ms,ref,ix_title,idx_audit,idx_mutiy,idx_mutiy,5,tp.供应商id,const,172,null
(2)sqlselect ms.药材表id, max(ms.audit) as audit, max(ms.price) as price, max(ms.market_price) as market_price,max(ms.is_granule) as is_granule,max(ms.is_decoct) as is_decoct, max(ms.is_slice) as is_slice,max(ms.is_cream) as is_cream, max(ms.is_extract) as is_extract,max(ms.is_cream_granule) as is_cream_granule, max(ms.is_extract_granule) as is_extract_granule,max(ms.is_drychip) as is_drychip,            max(ms.is_pill) as is_pill,max(ms.is_powder) as is_powder, max(ms.is_bolus) as is_bolus from 供应商药材表 as ms inner join (                select                    distinct (ssof.供应商id) as 供应商id                from                    药库供应商关系表 as ssof where  ssof.药库id in (  1, 2, 8, 9, 10, 11, 12, 13, 14, 15, 17, 22, 24, 25, 26, 27, 31, 33 ) and ssof.药方剂型id in (1) ) tp on tp.供应商id= ms.供应商id where  ms.audit = 1  group by  ms.药材表id
(3)索引   key `idx_mutiy` (`供应商id`, `audit`, `药材表id`)
(4)分析命中了索引,表间连接使用了供应商id,建立索引的顺序是供应商id,where条件中audit,group by 条件药材表id。
这部分暂时不需要更改。
4.10-6
(1)explain6,derived,r,range,primary,id,idx_timeline,idx_did_timeline,idx_did_isdel_statuspay_timecreate_payorderid,idx_did_statuspay_ischecked_isdel,idx_did_timeline,8,null,546,using where; using index; using temporary; using filesort
(2)sqlselect        count(*) as total,        rc.i as m药材表id      from         处方药材表 as rc         inner join 药方表as r on r.id = rc.药方表_id      where          r.did = 40          and r.timeline > 1576115196          and rc.type_id in (1, 3)          group by     rc.i
(3)索引key `idx_did_timeline` (`did`, `timeline`),
(4)分析驱动表与被驱动表,小表驱动大表。
先了解在join连接时哪个表是驱动表,哪个表是被驱动表:
1.当使用left join时,左表是驱动表,右表是被驱动表;
2.当使用right join时,右表时驱动表,左表是驱动表;
3.当使用join时,mysql会选择数据量比较小的表作为驱动表,大表作为被驱动表;
4. in后面跟的是驱动表, exists前面的是驱动表;
5. 11-6
(1)explain6,derived,rc,ref,orderid_药材表,药方表_id,药方表_id,5,r.id,3,using where
(2)sql同上
(3)索引  key `idx_药方表_id` (`药方表_id`, `type_id`) using btree,
(4)分析索引的顺序没有问题,仍旧是in 导致了回表。
6.8-5
(1)explain5,union,malias,all,id_tid,null,null,null,4978,using where
(2)sql select       mb.id,       mb.sort_id,       mb.title,       mb.py,       mb.unit,       mb.weight,       mb.tid,       mb.amount_max,       mb.poisonous,       mb.is_auxiliary,       mb.is_auxiliary_free,       mb.is_difficult_powder,       mb.brief,       mb.is_fixed_recipe,       ase when malias.py = 'gc' then malias.title else case when malias.title = 'gc' then malias.title else '' end end as atitle,       alias.py as apy,       case when malias.py = 'gc' then 2 else case when malias.title = 'gc' then 2 else 1 end end as ttid  from       药材表 as mb       left join 药材表 as malias on malias.tid = mb.id where       alias.title like '%gc%'       or malias.py like '%gc%'
(3)索引key `id_tid` (`tid`) using btree,

(4)分析因为like是左右like,无法建立索引,所以只能建tid。type是all,遍历全表以找到匹配的行,左右表大小一样,估算的找到所需的记录所需要读取的行数有4978。这个因为是like的缘故,无法优化,这个语句并没有走索引,药材表 as mb force index (id_tid) 改为强制索引,读取的行数减少了700行。
7.9-5
(1)explain5,union,mb,eq_ref,primary,ix_id,primary,4,malias.tid,1,null
(2)sql同上
(3)索引primary key (`id`) using btree,
(4)分析走了主键索引,行数也少,通过。
8.7-4
(1)explain4,derived,mb,all,id_tid,null,null,null,4978,using where
(2)sql
select    mb.id,    mb.sort_id,    mb.title,    mb.py,    mb.unit,    mb.weight,    mb.tid,    mb.amount_max,    mb.poisonous,    mb.is_auxiliary,    mb.is_auxiliary_free,    mb.is_difficult_powder,    mb.brief,    mb.is_fixed_recipe,    '' as atitle,    '' as apy,    case when mb.py = 'gc' then 3 else case when mb.title = 'gc' then 3 else 1 end end as ttid from    药材表 as mb   where    mb.tid = 0    and (       mb.title like '%gc%'        or mb.py like '%gc%'                            )
(3)索引
key `id_tid` (`tid`) using btree,

(4)分析
tid int(11) not null default ‘0’ comment ‘真名药品的id’,
他也是like,这个没法优化。
9.6-3
(1)explain3,derived,<derived4>,all,null,null,null,null,9154,using filesort
(2)sql
union all
(3)索引

(4)分析就是把真名搜索结果和别人搜索结果合并。避免用or连接,加快速度 形成一个munion的表,初步完成药材搜索,接下去就是排序。
这一个进行了2次查询,然后用union连接,可以考虑合并为一次查询。用case when进行区分,计算出权重。
这边是一个优化点。
10.4-2
(1)explain2,derived,<derived3>,all,null,null,null,null,9154,null
(2)sql
select    munion.id,    munion.sort_id,    case when length(     trim(          group_concat(munion.atitle separator ' ')                    )                )> 0 then concat(                    munion.title,                     '(',                     trim(                        group_concat(munion.atitle separator ' ')                    ),                     ')'                ) else munion.title end as title,       munion.py,       munion.unit,       munion.weight,       munion.tid,       munion.amount_max,       munion.poisonous,       munion.is_auxiliary,       munion.is_auxiliary_free,       munion.is_difficult_powder,       munion.brief,       munion.is_fixed_recipe,       --  trim( group_concat( munion.atitle separator ' ' ) ) as atitle,                ##  --         trim(             group_concat(munion.apy separator ' ')             ) as apy,          ##              max(ttid) * 100000 + id as ttid      from             munion <derived4>         group by             id -- 全部实名药材 结束##
(3)索引

(4)分析这里全部在临时表中搜索了。
11.5-2
(1)explain2,derived,<derived6>,ref,<auto_key0>,<auto_key0>,5,m.id,10,null
(2)sqlselect fields from 全部实名药材表 as m  left join ( 个人使用药材统计表 ) p on m.id = p.m药材表id
(3)索引无
(4)分析2张虚拟表left join
使用了优化器为派生表生成的索引
这边比较浪费性能,每次查询,都要对医生历史开方记录进行统计,并且统计还是几张大表计算后的结果。但是如果只是sql优化,这边暂时无法优化。
12.2-1
(1)explain1,primary,<derived7>,all,null,null,null,null,3096,using where; using temporary; using filesort
(2)sql
(3)索引
(4)分析
临时表操作
13.3-1
(1)explain1,primary,<derived2>,ref,<auto_key0>,<auto_key0>,4,msu.药材表id,29,null
(2)sql
(3)索引
(4)分析
临时表操作
14.null
(1)explainnull,union result,<union4,5>,all,null,null,null,null,null,using temporary
(2)sql
(3)索引
(4)分析
临时表
(二)优化sql
上面我们只做索引的优化,遵循的原则是:
1.最左前缀匹配原则,非常重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。2.=和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式。3.尽量选择区分度高的列作为索引,区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,那可能有人会问,这个比例有什么经验值吗?使用场景不同,这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条记录。4.索引列不能参与计算,保持列“干净”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。所以语句应该写成create_time = unix_timestamp(’2014-05-29’)。5.尽量的扩展索引,不要新建索引。比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可。
查询优化神器 - explain命令
关于explain命令相信大家并不陌生,具体用法和字段含义可以参考官网explain-output,这里需要强调rows是核心指标,绝大部分rows小的语句执行一定很快(有例外,下面会讲到)。所以优化语句基本上都是在优化rows。
化基本步骤:
0.先运行看看是否真的很慢,注意设置sql_no_cache1.where条件单表查,锁定最小返回记录表。这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开始查起,单表每个字段分别查询,看哪个字段的区分度最高;2.explain查看执行计划,是否与1预期一致(从锁定记录较少的表开始查询);3.order by limit 形式的sql语句让排序的表优先查;4.了解业务方使用场景;5.加索引时参照建索引的几大原则;6.观察结果,不符合预期继续从0分析;
上面已经详细的分析了每一个步骤,根据上面的sql,去除union操作, 增加索引。可以看出,优化后虽然有所改善。但是距离我们的希望还有很大距离,但是光做sql优化,感觉也没有多少改进空间,所以决定从其他方面解决。
(三)拆分sql
由于速度还是不领人满意,尤其是个人用药情况统计,其实没必要每次都全部统计一次,再要优化,只靠修改索引应该是不行的了,所以考虑使用缓存。
接下来是修改php代码,把全部sql语句拆分,然后再组装。
(1)搜索真名,别名(缓存)select  mb.id,  mb.sort_id,  mb.title,  mb.py,  mb.unit,  mb.weight,  mb.tid,  mb.amount_max,  mb.poisonous,  mb.is_auxiliary,  mb.is_auxiliary_free,  mb.is_difficult_powder,  mb.brief,  mb.is_fixed_recipe,  ifnull(group_concat(malias.title),'') atitle,  ifnull(group_concat(malias.py),'') apy  from  药材表 as mb  left join 药材表 as malias on malias.tid = mb.id  where  mb.tid = 0  and (  malias.title like '%gc%'  or malias.py like '%gc%'  or mb.title like '%gc%'  or mb.py like '%gc%'  )  group by  mb.id
(2)如果命中有药材①排序真名在前,别名在后,完全匹配在前,部分匹配在后
//对搜索结果进行处理,增加权重
②对供应商药材搜索select ms.药材表id, max( ms.audit ) as audit, max( ms.price ) as price, max( ms.market_price ) as market_price, max( ms.is_granule ) as is_granule, max( ms.is_decoct ) as is_decoct, max( ms.is_slice ) as is_slice, max( ms.is_cream ) as is_cream, max( ms.is_extract ) as is_extract, max( ms.is_cream_granule) as is_cream_granule, max( ms.is_extract_granule) as is_extract_granule, max( ms.is_drychip ) as is_drychip, max( ms.is_pill ) as is_pill, max( ms.is_powder ) as is_powder, max( ms.is_bolus ) as is_bolus  from 供应商药材表 as ms where ms.audit = 1 and ms.供应商idin (  select distinct  ( ssof.供应商id) as 供应商id from  药库供应商关系表 as ssof  where  ssof.药库id in ( 1,2,8,9,10,11,12,13,14,15,17,22,24,25,26,27,31,33 )  and ssof.药方剂型id in (1) ) and ms.药材表id in ( 78,205,206,207,208,209,334,356,397,416,584,652,988,3001,3200,3248,3521,3522,3599,3610,3624,4395,4396,4397,4398,4399,4400,4401,4402,4403,4404,4405,4406,4407,4408,5704,5705,5706,5739,5740,5741,5742,5743,6265,6266,6267,6268,6514,6515,6516,6517,6518,6742,6743 ) and ms.is_slice = 1  group by ms.药材表id
③拿医生历史开方药材用量数据(缓存)select  count( * ) as total,  rc.i as 药材表id from  处方药材表 as rc  inner join 药方表as r on r.id = rc.药方表_id where  r.did = 40  and r.timeline > 1576116927  and rc.type_id in (1,3) group by  rc.i
④  装配及排序微调
(3)小结运行速度,对于开方量不是特别多的医生来说,两者速度都是0.1秒左右.但是如果碰到开方量大的医生,优化后的sql速度比较稳定,能始终维持在0.1秒左右,优化前的sql速度会超过0.2秒.速度提升约一倍以上。
最后对搜索结果和未优化前的搜索结果进行比对,结果数量和顺序完全一致.本次优化结束。
四、附录:
select sql_no_cache     *from    (        -- mbu start##        select            m.*,            ifnull(p.total, 0) as total        from            (                --全部实名药材开始##select       munion.id,       munion.sort_id,       case when length(        trim(              group_concat(munion.atitle separator ' ')                 )             )> 0 then concat(           munion.title,          '(',      trim(             group_concat(munion.atitle separator ' ')              ),                ')'             ) else munion.title end as title,        munion.py,        munion.unit,        munion.weight,        munion.tid,        munion.amount_max,        munion.poisonous,        munion.is_auxiliary,        munion.is_auxiliary_free,        munion.is_difficult_powder,        munion.brief,        munion.is_fixed_recipe,        --  trim( group_concat( munion.atitle separator ' ' ) ) as atitle,##        --  trim( group_concat( munion.apy separator  ' ' ) ) as apy,##              max(ttid) * 100000 + id as ttid           from              (                -- #union start联合查找,得到全部药材##  (       select              mb.id,              mb.sort_id,              mb.title,              mb.py,              mb.unit,              mb.weight,              mb.tid,              mb.amount_max,              mb.poisonous,              mb.is_auxiliary,              mb.is_auxiliary_free,              mb.is_difficult_powder,              mb.brief,              mb.is_fixed_recipe,              '' as atitle,              '' as apy,              case when mb.py = 'gc' then 3 else case when mb.title = 'gc' then 3 else 1 end end as ttid               from                 药材表 as mb                     where                         mb.tid = 0                       and (                              mb.title like '%gc%'                              or mb.py like '%gc%'                                )                        ) --真名药材结束## union all    (      select            mb.id,            mb.sort_id,            mb.title,            mb.py,            mb.unit,            mb.weight,            mb.tid,            mb.amount_max,            mb.poisonous,            mb.is_auxiliary,            mb.is_auxiliary_free,            mb.is_difficult_powder,            mb.brief,            mb.is_fixed_recipe,            case when malias.py = 'gc' then malias.title else case when malias.title = 'gc' then malias.title else '' end end as atitle,            malias.py as apy,            case when malias.py = 'gc' then 2 else case when malias.title = 'gc' then 2 else 1 end end as ttid          from                药材表 as mb                left join 药材表 as malias on malias.tid = mb.id          where                malias.title like '%gc%'                or malias.py like '%gc%'                      ) --其他药材结束##                 -- #union end##                ) munion                group by                    id --全部实名药材结束##                    ) m            left join (                --个人使用药材统计开始##    select          count(*) as total,          rc.i as m药材表id     from           处方药材表 as rc           inner join 药方表as r on r.id = rc.药方表_id      where           r.did = 40            and r.timeline > 1576115196            and rc.type_id in (1, 3)       group by              rc.i --个人使用药材统计结束##           ) p on m.id = p.m药材表id -- mbu end ##            ) mbu    inner join (        -- msu start供应商药材筛选##        select            ms.药材表id,            max(ms.audit) as audit,            max(ms.price) as price,            max(ms.market_price) as market_price,            max(ms.is_granule) as is_granule,            max(ms.is_decoct) as is_decoct,            max(ms.is_slice) as is_slice,            max(ms.is_cream) as is_cream,            max(ms.is_extract) as is_extract,            max(ms.is_cream_granule) as is_cream_granule,            max(ms.is_extract_granule) as is_extract_granule,            max(ms.is_drychip) as is_drychip,            max(ms.is_pill) as is_pill,            max(ms.is_powder) as is_powder,            max(ms.is_bolus) as is_bolus        from            供应商药材表 as ms            inner join (                select                    distinct (ssof.供应商id) as 供应商id                from                    药库供应商关系表 as ssof                where                    ssof.药库id in (                        1, 2, 8, 9, 10, 11, 12, 13, 14, 15, 17, 22,                        24, 25, 26, 27, 31, 33                    )                    and ssof.药方剂型id in (1)            ) tp on tp.供应商id= ms.供应商id        where            ms.audit = 1        group by            ms.药材表id -- msu end ##            ) msu on mbu.id = msu.药材表idwhere    msu.药材表id > 0    and msu.is_slice = 1order by    total desc,    ttid desc
相关免费学习推荐:mysql视频教程
以上就是记录 慢sql优化实战的详细内容。
其它类似信息

推荐信息