这篇文章主要简单分析了linux下system函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
简单分析了linux下system函数的相关内容,具体内容如下
int
libc_system (const char *line)
{
if (line == null)
/* check that we have a command processor available. it might
not be available after a chroot(), for example. */
return do_system ("exit 0") == 0;
return do_system (line);
}
weak_alias (libc_system, system)
代码位于glibc/sysdeps/posix/system.c,这里system是libc_system的弱别名,而libc_system是do_system的前端函数,进行了参数的检查,接下来看do_system函数。
static int
do_system (const char *line)
{
int status, save;
pid_t pid;
struct sigaction sa;
#ifndef _libc_reentrant
struct sigaction intr, quit;
#endif
sigset_t omask;
sa.sa_handler = sig_ign;
sa.sa_flags = 0;
sigemptyset (&sa.sa_mask);
do_lock ();
if (add_ref () == 0)
{
if (sigaction (sigint, &sa, &intr) < 0)
{
(void) sub_ref ();
goto out;
}
if (sigaction (sigquit, &sa, &quit) < 0)
{
save = errno;
(void) sub_ref ();
goto out_restore_sigint;
}
}
do_unlock ();
/* we reuse the bitmap in the 'sa' structure. */
sigaddset (&sa.sa_mask, sigchld);
save = errno;
if (sigprocmask (sig_block, &sa.sa_mask, &omask) < 0)
{
#ifndef _libc
if (errno == enosys)
set_errno (save);
else
#endif
{
do_lock ();
if (sub_ref () == 0)
{
save = errno;
(void) sigaction (sigquit, &quit, (struct sigaction *) null);
out_restore_sigint:
(void) sigaction (sigint, &intr, (struct sigaction *) null);
set_errno (save);
}
out:
do_unlock ();
return -1;
}
}
#ifdef cleanup_handler
cleanup_handler;
#endif
#ifdef fork
pid = fork ();
#else
pid = fork ();
#endif
if (pid == (pid_t) 0)
{
/* child side. */
const char *new_argv[4];
new_argv[0] = shell_name;
new_argv[1] = "-c";
new_argv[2] = line;
new_argv[3] = null;
/* restore the signals. */
(void) sigaction (sigint, &intr, (struct sigaction *) null);
(void) sigaction (sigquit, &quit, (struct sigaction *) null);
(void) sigprocmask (sig_setmask, &omask, (sigset_t *) null);
init_lock ();
/* exec the shell. */
(void) execve (shell_path, (char *const *) new_argv, environ);
_exit (127);
}
else if (pid < (pid_t) 0)
/* the fork failed. */
status = -1;
else
/* parent side. */
{
/* note the system() is a cancellation point. but since we call
waitpid() which itself is a cancellation point we do not
have to do anything here. */
if (temp_failure_retry (waitpid (pid, &status, 0)) != pid)
status = -1;
}
#ifdef cleanup_handler
cleanup_reset;
#endif
save = errno;
do_lock ();
if ((sub_ref () == 0
&& (sigaction (sigint, &intr, (struct sigaction *) null)
| sigaction (sigquit, &quit, (struct sigaction *) null)) != 0)
|| sigprocmask (sig_setmask, &omask, (sigset_t *) null) != 0)
{
#ifndef _libc
/* glibc cannot be used on systems without waitpid. */
if (errno == enosys)
set_errno (save);
else
#endif
status = -1;
}
do_unlock ();
return status;
}
do_system
首先函数设置了一些信号处理程序,来处理sigint和sigquit信号,此处我们不过多关心,关键代码段在这里
#ifdef fork
pid = fork ();
#else
pid = fork ();
#endif
if (pid == (pid_t) 0)
{
/* child side. */
const char *new_argv[4];
new_argv[0] = shell_name;
new_argv[1] = "-c";
new_argv[2] = line;
new_argv[3] = null;
/* restore the signals. */
(void) sigaction (sigint, &intr, (struct sigaction *) null);
(void) sigaction (sigquit, &quit, (struct sigaction *) null);
(void) sigprocmask (sig_setmask, &omask, (sigset_t *) null);
init_lock ();
/* exec the shell. */
(void) execve (shell_path, (char *const *) new_argv, environ);
_exit (127);
}
else if (pid < (pid_t) 0)
/* the fork failed. */
status = -1;
else
/* parent side. */
{
/* note the system() is a cancellation point. but since we call
waitpid() which itself is a cancellation point we do not
have to do anything here. */
if (temp_failure_retry (waitpid (pid, &status, 0)) != pid)
status = -1;
}
首先通过前端函数调用系统调用fork产生一个子进程,其中fork有两个返回值,对父进程返回子进程的pid,对子进程返回0。所以子进程执行6-24行代码,父进程执行30-35行代码。
子进程的逻辑非常清晰,调用execve执行shell_path指定的程序,参数通过new_argv传递,环境变量为全局变量environ。
其中shell_path和shell_name定义如下
#define shell_path "/bin/sh" /* path of the shell. */
#define shell_name "sh" /* name to give it. */
其实就是生成一个子进程调用/bin/sh -c "命令"来执行向system传入的命令。
下面其实是我研究system函数的原因与重点:
在ctf的pwn题中,通过栈溢出调用system函数有时会失败,听师傅们说是环境变量被覆盖,但是一直都是懵懂,今天深入学习了一下,总算搞明白了。
在这里system函数需要的环境变量储存在全局变量environ中,那么这个变量的内容是什么呢。
environ是在glibc/csu/libc-start.c中定义的,我们来看几个关键语句。
# define libc_start_main libc_start_main
libc_start_main是_start调用的函数,这涉及到程序开始时的一些初始化工作,对这些名词不了解的话可以看一下这篇文章。接下来看libc_start_main函数。
static int
libc_start_main (int (*main) (int, char **, char ** main_auxvec_decl),
int argc, char **argv,
#ifdef libc_start_main_auxvec_arg
elfw(auxv_t) *auxvec,
#endif
typeof (main) init,
void (*fini) (void),
void (*rtld_fini) (void), void *stack_end)
{
/* result of the 'main' function. */
int result;
libc_multiple_libcs = &_dl_starting_up && !_dl_starting_up;
#ifndef shared
char **ev = &argv[argc + 1];
environ = ev;
/* store the lowest stack address. this is done in ld.so if this is
the code for the dso. */
libc_stack_end = stack_end;
......
/* nothing fancy, just call the function. */
result = main (argc, argv, environ main_auxvec_param);
#endif
exit (result);
}
我们可以看到,在没有define shared的情况下,在第19行定义了environ的值。启动程序调用libc_start_main之前,会先将环境变量和argv中的字符串保存起来(其实是保存到栈上),然后依次将环境变量中各项字符串的地址,argv中各项字符串的地址和argc入栈,所以环境变量数组一定位于argv数组的正后方,以一个空地址间隔。所以第17行的&argv[argc + 1]语句就是取环境变量数组在栈上的首地址,保存到ev中,最终保存到environ中。第203行调用main函数,会将environ的值入栈,这个被栈溢出覆盖掉没什么问题,只要保证environ中的地址处不被覆盖即可。
所以,当栈溢出的长度过大,溢出的内容覆盖了environ中地址中的重要内容时,调用system函数就会失败。具体环境变量距离溢出地址有多远,可以通过在_start中下断查看。
以上就是linux下关于system函数的简单分析的详细内容。