这篇文章主要介绍了关于用tensorflow实现戴明回归算法的示例,有着一定的参考价值,现在分享给大家,有需要的朋友可以参考一下
如果最小二乘线性回归算法最小化到回归直线的竖直距离(即,平行于y轴方向),则戴明回归最小化到回归直线的总距离(即,垂直于回归直线)。其最小化x值和y值两个方向的误差,具体的对比图如下图。
线性回归算法和戴明回归算法的区别。左边的线性回归最小化到回归直线的竖直距离;右边的戴明回归最小化到回归直线的总距离。
线性回归算法的损失函数最小化竖直距离;而这里需要最小化总距离。给定直线的斜率和截距,则求解一个点到直线的垂直距离有已知的几何公式。代入几何公式并使tensorflow最小化距离。
损失函数是由分子和分母组成的几何公式。给定直线y=mx+b,点(x0,y0),则求两者间的距离的公式为:
# 戴明回归
#----------------------------------
#
# this function shows how to use tensorflow to
# solve linear deming regression.
# y = ax + b
#
# we will use the iris data, specifically:
# y = sepal length
# x = petal width
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
from tensorflow.python.framework import ops
ops.reset_default_graph()
# create graph
sess = tf.session()
# load the data
# iris.data = [(sepal length, sepal width, petal length, petal width)]
iris = datasets.load_iris()
x_vals = np.array([x[3] for x in iris.data])
y_vals = np.array([y[0] for y in iris.data])
# declare batch size
batch_size = 50
# initialize placeholders
x_data = tf.placeholder(shape=[none, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[none, 1], dtype=tf.float32)
# create variables for linear regression
a = tf.variable(tf.random_normal(shape=[1,1]))
b = tf.variable(tf.random_normal(shape=[1,1]))
# declare model operations
model_output = tf.add(tf.matmul(x_data, a), b)
# declare demming loss function
demming_numerator = tf.abs(tf.subtract(y_target, tf.add(tf.matmul(x_data, a), b)))
demming_denominator = tf.sqrt(tf.add(tf.square(a),1))
loss = tf.reduce_mean(tf.truep(demming_numerator, demming_denominator))
# declare optimizer
my_opt = tf.train.gradientdescentoptimizer(0.1)
train_step = my_opt.minimize(loss)
# initialize variables
init = tf.global_variables_initializer()
sess.run(init)
# training loop
loss_vec = []
for i in range(250):
rand_index = np.random.choice(len(x_vals), size=batch_size)
rand_x = np.transpose([x_vals[rand_index]])
rand_y = np.transpose([y_vals[rand_index]])
sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
loss_vec.append(temp_loss)
if (i+1)%50==0:
print('step #' + str(i+1) + ' a = ' + str(sess.run(a)) + ' b = ' + str(sess.run(b)))
print('loss = ' + str(temp_loss))
# get the optimal coefficients
[slope] = sess.run(a)
[y_intercept] = sess.run(b)
# get best fit line
best_fit = []
for i in x_vals:
best_fit.append(slope*i+y_intercept)
# plot the result
plt.plot(x_vals, y_vals, 'o', label='data points')
plt.plot(x_vals, best_fit, 'r-', label='best fit line', linewidth=3)
plt.legend(loc='upper left')
plt.title('sepal length vs pedal width')
plt.xlabel('pedal width')
plt.ylabel('sepal length')
plt.show()
# plot loss over time
plt.plot(loss_vec, 'k-')
plt.title('l2 loss per generation')
plt.xlabel('generation')
plt.ylabel('l2 loss')
plt.show()
结果:
本文的戴明回归算法与线性回归算法得到的结果基本一致。两者之间的关键不同点在于预测值与数据点间的损失函数度量:线性回归算法的损失函数是竖直距离损失;而戴明回归算法是垂直距离损失(到x轴和y轴的总距离损失)。
注意,这里戴明回归算法的实现类型是总体回归(总的最小二乘法误差)。总体回归算法是假设x值和y值的误差是相似的。我们也可以根据不同的理念使用不同的误差来扩展x轴和y轴的距离计算。
相关推荐:
用tensorflow实现多类支持向量机的示例代码
tensorflow实现非线性支持向量机的实现方法
以上就是用tensorflow实现戴明回归算法的示例的详细内容。