basemap是matplotlib的一个子包,负责地图绘制。昨天的推送对如何绘制风向图进行了描述,本文再次利用该包简单介绍如何绘制海洋及海冰温度彩色图示,该图常见于noaa官网。具体操作如下:
导入命令
1)设置工作环境并导入程序包
%cd "f:\\dropbox\\python"
from mpl_toolkits.basemap import basemap
from netcdf4 import dataset, date2index
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime
2)设定时间并读取数据
dataset = \
dataset('http://www.ncdc.noaa.gov/thredds/dodsc/oisst-v2-avhrr_agg')
timevar = dataset.variables['time']
timeindex = date2index(date,timevar)
3)数据预处理
sst = dataset.variables['sst'][timeindex,:].squeeze()
ice = dataset.variables['ice'][timeindex,:].squeeze()
lats = dataset.variables['lat'][:]
lons = dataset.variables['lon'][:]
lons, lats = np.meshgrid(lons,lats)
4)设定并绘制图示
fig = plt.figure()
ax = fig.add_axes([0.05,0.05,0.9,0.9])
m = basemap(projection='kav7',lon_0=0,resolution=none)
m.drawmapboundary(fill_color='0.3')im1 = m.pcolormesh(lons,lats,sst,shading='flat',cmap=plt.cm.jet,latlon=true)
im2 = m.pcolormesh(lons,lats,ice,shading='flat',cmap=plt.cm.gist_gray,latlon=true)
m.drawparallels(np.arange(-90.,99.,30.))
m.drawmeridians(np.arange(-180.,180.,60.))cb = m.colorbar(im1,"bottom", size="5%", pad="2%")ax.set_title('sst and ice analysis for %s'%date)
plt.show()
输出图像如下
以上就是【python教程】地理可视化之二的内容。
