这篇文章主要介绍了python实现的递归神经网络,是一篇摘录自github代码片段的文章,涉及python递归与数学运算相关操作技巧,需要的朋友可以参考下
本文实例讲述了python实现的递归神经网络。分享给大家供大家参考,具体如下:
# recurrent neural networks
import copy, numpy as np
np.random.seed(0)
# compute sigmoid nonlinearity
def sigmoid(x):
output = 1/(1+np.exp(-x))
return output
# convert output of sigmoid function to its derivative
def sigmoid_output_to_derivative(output):
return output*(1-output)
# training dataset generation
int2binary = {}
binary_dim = 8
largest_number = pow(2,binary_dim)
binary = np.unpackbits(
np.array([range(largest_number)],dtype=np.uint8).t,axis=1)
for i in range(largest_number):
int2binary[i] = binary[i]
# input variables
alpha = 0.1
input_dim = 2
hidden_dim = 16
output_dim = 1
# initialize neural network weights
synapse_0 = 2*np.random.random((input_dim,hidden_dim)) - 1
synapse_1 = 2*np.random.random((hidden_dim,output_dim)) - 1
synapse_h = 2*np.random.random((hidden_dim,hidden_dim)) - 1
synapse_0_update = np.zeros_like(synapse_0)
synapse_1_update = np.zeros_like(synapse_1)
synapse_h_update = np.zeros_like(synapse_h)
# training logic
for j in range(10000):
# generate a simple addition problem (a + b = c)
a_int = np.random.randint(largest_number/2) # int version
a = int2binary[a_int] # binary encoding
b_int = np.random.randint(largest_number/2) # int version
b = int2binary[b_int] # binary encoding
# true answer
c_int = a_int + b_int
c = int2binary[c_int]
# where we'll store our best guess (binary encoded)
d = np.zeros_like(c)
overallerror = 0
layer_2_deltas = list()
layer_1_values = list()
layer_1_values.append(np.zeros(hidden_dim))
# moving along the positions in the binary encoding
for position in range(binary_dim):
# generate input and output
x = np.array([[a[binary_dim - position - 1],b[binary_dim - position - 1]]])
y = np.array([[c[binary_dim - position - 1]]]).t
# hidden layer (input ~+ prev_hidden)
layer_1 = sigmoid(np.dot(x,synapse_0) + np.dot(layer_1_values[-1],synapse_h))
# output layer (new binary representation)
layer_2 = sigmoid(np.dot(layer_1,synapse_1))
# did we miss?... if so, by how much?
layer_2_error = y - layer_2
layer_2_deltas.append((layer_2_error)*sigmoid_output_to_derivative(layer_2))
overallerror += np.abs(layer_2_error[0])
# decode estimate so we can print(it out)
d[binary_dim - position - 1] = np.round(layer_2[0][0])
# store hidden layer so we can use it in the next timestep
layer_1_values.append(copy.deepcopy(layer_1))
future_layer_1_delta = np.zeros(hidden_dim)
for position in range(binary_dim):
x = np.array([[a[position],b[position]]])
layer_1 = layer_1_values[-position-1]
prev_layer_1 = layer_1_values[-position-2]
# error at output layer
layer_2_delta = layer_2_deltas[-position-1]
# error at hidden layer
layer_1_delta = (future_layer_1_delta.dot(synapse_h.t) + layer_2_delta.dot(synapse_1.t)) * sigmoid_output_to_derivative(layer_1)
# let's update all our weights so we can try again
synapse_1_update += np.atleast_2d(layer_1).t.dot(layer_2_delta)
synapse_h_update += np.atleast_2d(prev_layer_1).t.dot(layer_1_delta)
synapse_0_update += x.t.dot(layer_1_delta)
future_layer_1_delta = layer_1_delta
synapse_0 += synapse_0_update * alpha
synapse_1 += synapse_1_update * alpha
synapse_h += synapse_h_update * alpha
synapse_0_update *= 0
synapse_1_update *= 0
synapse_h_update *= 0
# print(out progress)
if j % 1000 == 0:
print("error:" + str(overallerror))
print("pred:" + str(d))
print("true:" + str(c))
out = 0
for index,x in enumerate(reversed(d)):
out += x*pow(2,index)
print(str(a_int) + " + " + str(b_int) + " = " + str(out))
print("------------")
运行输出:
error:[ 3.45638663]
pred:[0 0 0 0 0 0 0 1]
true:[0 1 0 0 0 1 0 1]
9 + 60 = 1
------------
error:[ 3.63389116]
pred:[1 1 1 1 1 1 1 1]
true:[0 0 1 1 1 1 1 1]
28 + 35 = 255
------------
error:[ 3.91366595]
pred:[0 1 0 0 1 0 0 0]
true:[1 0 1 0 0 0 0 0]
116 + 44 = 72
------------
error:[ 3.72191702]
pred:[1 1 0 1 1 1 1 1]
true:[0 1 0 0 1 1 0 1]
4 + 73 = 223
------------
error:[ 3.5852713]
pred:[0 0 0 0 1 0 0 0]
true:[0 1 0 1 0 0 1 0]
71 + 11 = 8
------------
error:[ 2.53352328]
pred:[1 0 1 0 0 0 1 0]
true:[1 1 0 0 0 0 1 0]
81 + 113 = 162
------------
error:[ 0.57691441]
pred:[0 1 0 1 0 0 0 1]
true:[0 1 0 1 0 0 0 1]
81 + 0 = 81
------------
error:[ 1.42589952]
pred:[1 0 0 0 0 0 0 1]
true:[1 0 0 0 0 0 0 1]
4 + 125 = 129
------------
error:[ 0.47477457]
pred:[0 0 1 1 1 0 0 0]
true:[0 0 1 1 1 0 0 0]
39 + 17 = 56
------------
error:[ 0.21595037]
pred:[0 0 0 0 1 1 1 0]
true:[0 0 0 0 1 1 1 0]
11 + 3 = 14
------------
以上就是解析python实现递归神经网络的问题的详细内容。