上篇文章介绍了jvm内存模型的相关知识,其实还有些内容可以更深入的介绍下,比如运行时常量池的动态插入,直接内存等,后期抽空再完善下上篇博客,今天来介绍下jvm中的一些垃圾回收策略。
一、finailize()方法
在介绍gc策略前,先介绍下gc中的finailize方法。当对象没有任何引用的时候,通常这个对象会被回收掉,但如果我们想在对象被回收前进行一些操作,比如关闭一些资源,或者让这个对象复活,不让他被回收怎么办?这时候就要用到finailize方法了。finailize方法是object类中定义的方法,意味着任何一个对象都有这个方法。但这个方法只会调用一次,如果把这个对象复活后再次让这个对象死亡,那第2次回收该对象的时候是不会调用finailize方法的,而且优先级比较低,并不能保证一定会被执行,因此不建议使用finalize方法。总结起来就是3个特性: ①、gc之前被调用 。②、只会被调用一次。③、不可靠,不能保证被执行,不建议使用。关于finalize使用方法,参考如下代码:
1 public class finalizetest { 2 3 private static finalizetest test; 4 /** 5 * vm参数:-xx: +printgcdetails -xmx=1m -xms=1m 6 * 7 * @param args 8 */ 9 public static void main(string[] args) {10 //先对test对象赋值11 test = new finalizetest();12 int _1m = 1024 * 1024;13 //将test置为null,便于回收14 test = null;15 try {16 system.gc();17 //模拟睡眠5s,finalize优先级较低,保证finalize能执行18 thread.sleep(5000);19 } catch (interruptedexception e) {20 e.printstacktrace();21 }22 if (test != null) {23 system.out.println("first,i am alive");24 }else{25 system.out.println("first,i am dead");26 }27 //由于test在finalize方法里复活了,再次将test置为null28 test = null;29 try {30 system.gc();31 thread.sleep(5000);//模拟睡眠5s,让gc回收32 } catch (interruptedexception e) {33 e.printstacktrace();34 }35 if (test != null) {36 system.out.println("second,i am alive");37 }else{38 system.out.println("second,i am dead");39 }40 41 }42 @override43 protected void finalize() throws throwable {44 test = this ;45 system.out.println("finalize excuted");46 super.finalize(); //调用父类的finailize方法47 }48 }
该代码运行结果如下:
可以看到,finalize方法执行后,test对象又被重新激活了,因此打印了first,i am alive。但是第二次gc的时候,finalize方法并未被执行,因此打印了second,i am dead。前面提到finalize是优先级低不可靠的,那如果没有thread.sleep(5000),再来看下代码和结果:
1 public class finalizetest { 2 3 private static finalizetest test; 4 /** 5 * vm参数:-xx: +printgcdetails -xmx=1m -xms=1m 6 * 7 * @param args 8 */ 9 public static void main(string[] args) {10 //先对test对象赋值11 test = new finalizetest();12 int _1m = 1024 * 1024;13 //将test置为null,便于回收14 test = null;15 try {16 system.gc();17 //模拟睡眠5s,finalize优先级较低,保证finalize能执行18 //不执行睡眠操作,thread.sleep(5000);19 } catch (exception e) {20 e.printstacktrace();21 }22 if (test != null) {23 system.out.println("first,i am alive");24 }else{25 system.out.println("first,i am dead");26 }27 //由于test在finalize方法里复活了,再次将test置为null28 test = null;29 try {30 system.gc();31 //不执行睡眠操作,thread.sleep(5000);//模拟睡眠5s,让gc回收32 } catch (exception e) {33 e.printstacktrace();34 }35 if (test != null) {36 system.out.println("second,i am alive");37 }else{38 system.out.println("second,i am dead");39 }40 41 }42 @override43 protected void finalize() throws throwable {44 test = this ;45 system.out.println("finalize excuted");46 super.finalize(); //调用父类的finailize方法47 }48 }
运行结果如下:
这里可以很清楚地看到,finalize方法的优先级是比较低的。
关于这个例子的反思:这个例子中第一段代码是参考《深入理解java虚拟机》里的代码实现的,但是总感觉有2点疑问:为什么test对象是以static修饰的成员变量方式存在?如果是static修饰,那就是存在方法区了,而方法区的gc通常效果不太好的。另一个是以成员变量的方式存在,这样finalize回收的时候,体现不出是对当前对象本身的回收,所以感觉这个例子并不是很好。
二、引用计数法
引用计数法是一种比较早的gc回收算法,目前一般不采用,其主要思想是:每个对象都维持一个引用计数器,初始值为0,当一个对象被引用的时候,该对象的引用计数器就加1,当不被引用的时候,该对象的引用计数器就减1,如果一个对象的引用计数器变为了0,则该对象被认为是可以回收的。采用这种方式的优缺点都很明显,优点是实现简单,效率高,缺点是可能存在循环引用,导致内存溢出。
三、标记-清除法
标记-清除法按名字分为“标记”和“清除”2个阶段,其基本思想是:首先标记出所有存活的对象,标记完成后,统一清除所有被标记的对象。那怎么判断某个对象是可以回收的呢?gc时,从一系列gc roots根节点开始遍历,遍历时走过的路径即称为引用链,如果一个对象和gc roots没有任何引用链相关,那么这个对象就不可用,就会被判定为可回收,这种算法也叫根搜索算法。那么哪些对象可以成为gc roots对象呢?在java语言里,可以作为gc roots的对象包括下面4种:
虚拟机栈中的引用变量
方法区中的类静态属性引用的对象
方法区中的常量引用的对象
本地方法栈中jni(即native方法)的引用的对象
标记-清除法的算法示意图如下:
注:本文的gc回收算法图片转自一个网友的文章(点这里),该网友的图片内容也与原著一致,只是颜色不同。
四、新生代的复制法
复制法的基本思想是:将内存分为大小相等的2块,每次只使用其中一块,gc时每次将所有存活的对象复制到另一块区域,然后清理该内存。
这几种都是方法区和栈中的引用对象。复制法的优点是:实现简单,回收速度快,且不会产生内存碎片。但由于每次只使用其中一块,导致内存利用率较低。复制算法的示意图如下:
相关推荐:
jvm垃圾回收算法
分享java垃圾回收机制学习总结
以上就是java虚拟机学习笔记:jvm内存模型中垃圾回收方法的详细内容。