阳离子交换树脂的选择性与交换能力
产品名称:001×7强酸性苯乙烯系阳离子交换树脂
详细信息:
二、国外应牌号
美国:amberlite ir-120; dowex 50-x8; 德国:lewatit s-100;日本:diaion sk-1b
三、执行标准
gb13659-92 dl519-93 sh2605.01-1997 q/jh105-2002
四、理化性能
名称
001×7h/na
001×7fc h/na
001×7mb h/na
全交换容量 mmol/g≥
5.00/4.50
4.90/4.40
体积交换容量mmol/ml≥
1.75/1.90
1.70/1.80
含水量
51-56/45-50
湿视密度g/ml
0.73-0.83/0.77-0.87
湿真密度g/ml`!(¼52 ng$enp2052
粒度
(0.315-1.25mm)≥95
(0.45-1.25mm)≥95
(0.71-1.25mm)≥95
(〈0.315mm)≤1
(〈0.45mm)≤1
(>0.71mm)≤1
有效粒径mm
0.40-0.60
≥0.05
0.75-0.95
均一系数≤
1.60
1.40
磨后圆球率 ≥
90
外形
金黄至棕褐色球状颗粒
金黄至棕褐色球状颗粒
金黄至棕褐色球状颗粒
出厂型式
na
na
na
用途
通用
浮动床
混床
出厂型式:na型 外观:金黄至棕褐色球状颗粒。
五、指标:
1.ph范围:1-14
2.使用温度:氢型≤100℃, 钠型≤120℃,
3.转型膨胀率:(na+→h+)8-10
4.树脂层高度:1.5m以上。
5.再生液浓度 nacl:8-10,
hcl:4-5.
6.再生液用量:
nacl(8-10)体积:树脂体积=1.5-2:1.
hcl(4-5)体积:树脂体积=2-3:1.
7.再生液流速: 5-8 m/h.
8.再生接触时间: 45-60 min.
9.正洗流速: 10-20 m/h
10.正洗时间: 约30 min
11.运行流速: 15-30 m/h
12.交换容量:≥1000mol/m3
六、主 要 用 途
用于水的处理(包括硬水软化、高压炉水、无离子水、注射水、海水淡化等),废水中贵金属的回收,抗生素的提纯,代替人体内肾脏的作用。
七、包装,贮运
本产品用内衬塑料袋的编织袋包装,每袋25kg,也可根据需求用塑料桶或其它容器包装,本产品为非危险品。贮运温度5-40℃,严禁脱水、曝晒。
阴、阳离子交换树脂树脂的贮存:
离子交换树脂肪内含有一定量的水份,在运输及贮存过程中应尽量保持这部分水。如贮存过程中树脂脱了水,应先用浓食盐水(-10)浸泡,再逐渐稀释,不得直接放于水中,以免树脂急剧膨胀而破碎。在长期贮存中,强型树脂应转变成盐型,弱型树脂可转变成相应的氢型或游离碱型也可转为盐型,然后浸泡在洁净的水中。树脂在贮存或运输过程中,应保持在5-40癈的温度环境中,避免过冷或过热,影响质量。若冬季没有保温设备时,可将树脂贮存在食盐水中,食盐水的温度可根据气温而定。
新树脂的预处理:
新树脂常含有溶剂、未参加聚合反应的物质和少量低聚合物,还可能吸着铁、铝、铜等重金属离子。当树脂与水、酸、碱或其他溶液相接触时,上述可溶性杂质就会转入溶液中,在使用初期污染出水水质。所以,新树脂在投运前要进行预处理。
阳树脂的预处理
阳树脂预处理步骤如下:
首先使用饱和食盐水,取其量约等于被处理树脂体积的两倍,将树脂置于食盐溶液中浸泡18-20小时,然后放尽食盐水,用清水漂洗净,使排出水不带黄色;其次再用2-4naoh溶液,其量与上相同,在其中浸泡2-4小时(或作小流量清洗),放尽碱液后,冲洗树脂直至排出水接近中性为止。后用5hcl溶液,其量亦与上述相同,浸泡4-8小时,放尽酸液,用清
水漂流至中性待用。
阴树脂的预处理
其预处理方法中的步与阳树脂预处理方法中的步相同;而后用
5hcl浸泡4-8小时,然后放尽酸液,用水清洗至中性;而后用2-4naoh溶
液浸泡4-8小时后,放尽碱液,用清水洗至中性待用。
阳离子交换树脂的选择性与交换能力
离子交换树脂的选择性与规律性
由于离子交换树脂对于水中各种离子吸着(或吸附)的能力不相同,对于其中一些离子很容易被吸着,而对另一些离子却很难吸着。被树脂吸着的离子,在再生的时候,有的离子很容易被置换下来,而有的却很难被置换。离子交换树脂的上述这种性能称之为选择性。树脂的选择性在实际水处理运行中,将影响离子交换过程和树脂的再生过程。离子交换树脂的选择性有其一定的规律性,例如,水中离子载的电荷越大,就越易被离子交换树脂吸着。反之,如果离子的电荷越小,就越不容易被吸着,如二价的离子比一价的离子更易被吸着。但如果离子载有相同的电荷时,原子序数大的元素所形成的离子的水合半径小,就容易被离子交换树脂所吸着。在含盐量不太高的水溶液中,常见离子的选择性次序为:
离子交换树脂
1、对于强酸性阳离子交换树脂:fe3+>al3+>ca2+>mg2+>k+≈nh4+>na+>h+>li+。
2、对于强碱性阴离子交换树脂:so42->no3->cl->oh->f->hco3->hsio3-。
3、对于弱酸性阳离子树脂:h+>fe3+>al3+>ca2+>mg2+>k+>na+>li+。
4、对于弱碱性阴离子交换树脂:oh->so42->no3->po43->cl->hco3->hsio3-。但必须指出,选择性能还与离子交换树脂的活性基团有关。
离子交换树脂
失效树脂可以通过再生重新获得交换能力
为了说明上述问题,以na型树脂交换水中ca2+,制取软化水来加以说明。当把含有ca2+的水通入na型离子交换树脂时,na型树脂即吸着水中的ca2+,并把本身含有的na+释放出来:2rna+ca2+→r2ca+2na+交换反应的结果,除去了水中的ca2+。
当上述交换反应达到平衡时,根据质量作用定律,可得出:knaca=式中knaca—平衡常数;[r2ca]、rna]—分别表示反应达到平衡时,树脂中ca2+,na+的浓度,mol/l;[ca2+]、[na+]—分别表示反应达到平衡时,水中的ca2+,na+浓度,mol/l。当运行到出水中ca2+含量开始上升时,表示树脂失效了。
离子交换树脂
为了使树脂重新获得交换能力,就要用nacl对树脂进行再生:2nacl+r2ca→2rna+cacl2。此时,尽管knaca>1,不利于树脂的再生,但由于再生时,nacl的浓度很高,而ca2+的浓度又很小,就可以使再生反应进行下去。所以在化学水处理中,就是通过提高再生剂的浓度,反复利用离子交换平衡的移动,使失效的树脂重要获得交换能力。