老习惯,还是先给出该章节的思维导图让大家先有个整体的概念 对于基础概念就不在此赘述,挑其中的几个容易混淆的点和关键点说说 首先便是互斥事件与独立事件,很多人会将两者混淆。有个例子很好的说明了两者不是一回事: 如果两个事件是互斥事件,其中之一被
老习惯,还是先给出该章节的思维导图让大家先有个整体的概念
对于基础概念就不在此赘述,挑其中的几个容易混淆的点和关键点说说
首先便是互斥事件与独立事件,很多人会将两者混淆。有个例子很好的说明了两者不是一回事:
如果两个事件是互斥事件,其中之一被确定已经发生,则另一事件发生的概率降为0,显然两者是相关的。喎?http://www.2cto.com/kf/ware/vc/ target=_blank class=keylink>vcd4kcjxwpiagicagicagxus0zs6qus7sqtl9yovm9bz+umxcystyo78g1elkx9lyzqrp1sq1yfq77tbqz+c7pbbawak1xmrcvp663mnzo6y087bgyv3kwrz+tcs3osn6trzt68bky/vkwrz+09c52mgqo6y8xsvjy/vdx7eiyfq1xljfwsrksc7sw8e+zddo0qqyydpdzpw8/rjfwsq1xle9yr2jrlwxylvi57n7wb249srcvp7kx8/gu6w2wmgitcs+zbk7sdju2tliumpkwrz+tcs3osn6yse38crcxutl+8rcvp61xnowz+zby6gjpc9wpgokpha+icagicagiccxtnk2y7m2qmdtysfkrrfw1tjsqrxe0ru49raowo2jrntztm699tf3vpk1pb3pydyjrnauuvo74dpqsqnoxm+4y7wxtnk2y7m2qmdtoamgo6jssr/j0ts/tl+0wfxotmx00ls1xlny09qxtnk2y7m1xlkpzssjqtwvcd4kpha+icagicagicc63lbgx+m/9s/cztldx7buztldx7ny0ms1xmrcvp6/ydluupiz9tk7upbpynhpumxcyrnavmajrmi7uvpl5tffztldx7xetfey6dhqvr/o0sphvau74bxdtb24/lbgtctqwtdfz6kjrnpaysfo0sphseo/ydluwpvtw9xi0knqwtdfz6k21m7sw8e1xm/i0em4xclkvfjq0l7a1f21w7w9umpkwrz+tcs689hpumxcyqgjsbtstsu5tqja7b7nysfv4th5tcs4xclkt9bo9srwts6hozwvcd4kcjxwpiagicagicagob7pynhpumxcyi0mz3q70mlqxc+ilsznddvtptpdsbtstsu5tqja7s0mz3q7uvpr6bjfwsqhvzwvcd4kcjxwpiagicagicagsbtstsu5tqja7bnjt7rtptpd09q+9rlft9bo9tbqoappynhpumxcys2os6pkx9pjvvay39xf1ve527navma1xkgj1nq9+ndq1b3c1l72st/ksaosu+hu2sihtcpr+bg+0mxporrzvmbl47rz0em4xclk0ts5qb72st/v38q508ohozwvcd4kcjxwpiagicagicagls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls08l3a+cjxwpiagicagicagphn0cm9uzz62/s/uyttr6bxe0ntwyjwvc3ryb25npjwvcd4kpha+icagicagicgxksdk1nhp08nsu7j2spzaqcbutm7p4m2stctk1nhptctq8shq1+mzyagjpgjypgogicagicagkdipimo/tm7k1nhp09dbvdbwv8ne3l3hufuho87sw8ew0cbk1tdsu7j2s8boqrpjuaajrmht0ru49rpgzqrkp7dcoam8yni+ciagicagicaomykgs8m5prxeumxcyqos08nwwlsx7cq+o6y497j2yttr6ba8z+dnrkgj09rkx6osyqew3lxeumxcytpdms1wse3kvqos0rk2vm/gzayhoyagob7oylao0ns82cnoob88yni+ciagicagicaonckgyttr6ba8yse2wmgitcshoyagicagicagicagicagicagicagicagicagicagicagicagicagicagicagicagicagicagicagicagicagicagicagicagicagicagicagicagicagicagicagicagicagicagicagicagicagicagicagicagicagob7ktdhptcs2wmgi0nshvzwvcd4kpha+icagicagic0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls08l3a+cjxwpiagicagidwvcd4kpha+icagicagilk0y8m31rk8ysfsu7j2yq631tby0qq1xlfwsryjrmv81vfsqtpd09q5wlzgphn0cm9uzz7es8rcvp7u2szytqi1xmqxvos2zrvyv9w85nbqt6lj+rxetm7k/twvc3ryb25npjwvcd4kpha+icagicagicatls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tltwvcd4kpha+icagicagidxzdhjvbmc+ilk0y8nk1nhptctq1nbkpc9zdhjvbmc+pc9wpgo8cd4gicagicagidghottaym7s4sg9upbp4lxis6s2ylxex/i85mnpysk8/reiyfrsu7totcs4xclkysfp4lxitcq8l3a+cjxwpiagicagicagmqgiysk8/ttaxlpsu8f4votjz7eiyfq78txfsru3osn60+vg5mv7x/i85mnpysk8/srht/g3osn6ysfo3rnytcq8l3a+cjxwpiagicagicagls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tls0tpc9wpgo8cd4gicagicagilk0y8m31rk8u7nt0nk7upaxyl3p1tjsqrxeznjq1mrhxutg2s370+u3vbluysfp4lxitcshozwvcd4kcjxwpiagicagicags6y8ulrot9ayvlxextrn+86qbiooci9okaost72y7s6qbiooci9oksooms1yl04pkigoti1uks8oti0xksmjrlwxttfjubu087xeyrg68qosvmdyl07oqncjrntyxtrn+86qbnast72y7s6qbnaoms1wkszp1mi71nq0y8fpv/bpwqoss6y8ulrot9ayvl/j08o2/s/ut9ayvcyjmzy5mjq7vfyhozwvcd4kcjxwpiagicagicagwazq+ndny+a7+rhkwb+6zcdryall5rv6setbv7xex/ix8ko6pgjypgo8l3a+cjxwpiagicagicagmagisrvu2czwwtvl5rv6setbv8ihxlpsu8zytqgmiziwntqwo7xeumxcyqgjtprm5rxyo6zm1slby+a7+rhkwb/u2ssz0ru4+laox/i85mihjimymdu0mdu1xljfwsqhozxicj4kpgjypgogicagicagicayoall5rv6setbv9tatnmgedg1vxgyvos1xmsz0ru4+laox/i85mihjimymdu0mdu1xljfwsqxu7ao0uxoqrjfwsrd3lbiuq/k/dtaicb4mdpredk85lxezbzqzrxew+a7/agjpc9wpgokpha+icagicagidxzdhjvbmc+inx9zky31rk8ysfkrrfw1tjsqrxet9ayvdwvc3ryb25npjwvcd4kpha+phn0cm9uzz4gicagicagidxpbwcgc3jjpq==http://www.2cto.com/uploadfile/collfiles/20140625/2014062509022412.png width=300 height=200 alt=\>
性质:
正态概率分布有一个完整家族。每一特定正态分布通过其均值 μ 、标准差 σ 来区分。
正态曲线的最高点在均值,它也是分布的中位数和众数
分布的均值可以是任意数值:负数、零或正数。
正态概率分布是对称的。
曲线的尾端向两个方向无限延伸,且理论上永远不会与横轴相交。
标准差决定曲线的宽度
正态概率分布曲线下的总面积是 1,对所有的连续型概率分布都是如此。
正态随机变量的概率由曲线下面积给出。一些常用区间的概率是68.26%,95.44%,99.72%
连续修正因子:当用连续正态概率分布来近似离散二项概率分布时,从x值加减的0. 5值。
指数分布与泊松分布的关系在于,如果泊松分布给出了每一间隔中发生次数的适当描述,则指数分布可给出两次发生之间间隔长度的描述。
ps: 指数分布是偏度为2的严重右偏分布。