您好,欢迎访问一九零五行业门户网

Java集合之HashMap详解

hashmap是一个散列表,存储的内容是键值对(key-value)映射。hashmap继承于abstractmap并实现了map、cloneable、serializable接口。
(1)hashmap不是线程安全的,同时key-value都可以为null,并且是无序的。
(2)hashmap的初始大小为16,最大大小为2的30次方,默认的加载因子是0.75。
(3)初始容量只是哈希表在创建时的容量,加载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度。当哈希表中的条目数超出了加载因子与当前容量的乘积时,就需要对该哈希表进行rehash操作(重建内部的数据结构)
hashmap与map关系如下:
(1)hashmap继承于abstractmap类,实现了map接口。
(2)hashmap通过拉链法实现哈希表。几个重要的成员变量有:table,size,threshold,loadfactor,modcount。
table是一个entry[]数组类型,entry实际上是一个单向链表,hashmap的key-value都存储在这个数组中。
size是hashmap的大小,它是hashmap保存的键值对的数量。
threshold是hashmap的阈值,用于判断是否需要调整hashmap的容量,threshold的值等于容量乘以加载因子,当hashmap中存储的数据达到threshold时,就需要将hashmap的容量加倍。
loadfactor加载因子
modcount用来实现fail-fast机制。
hashmap的遍历方式:
(1)遍历hashmap的键值对:第一步是获得通过entryset()函数获得entry集合,第二步通过iterator迭代器遍历entry集合获得数据
integer iterator =map.entryset().iterator()(iterator.hasnext())  {         map.entry entry=(map.entry)iterator.next()key=(string)enrty.getkey()value=(integer)entry.getvalue()}
(2)遍历hashmap的键,通过key来获得value
=integer =inerator =map.keyset().iterator()(iterator.hasnext()) {         key=(string)iterator.next()value=(integer)map.get(key)}
(3)遍历hashmap的值:第一步根据value获得值集合,对值集合进行迭代遍历
=collection =map.values()iterator = .iterator()(iterator.hasnext()) {     value=(integer)iterator.next()}
常用的函数:
() object               () (object key) (object value) set8817e8d4bd2291481cc1067ca69329e6>     () (object key) () seta8093152e673feb7aba1828c43532094               () (keyvalue) (map024902c398a6aa179f04c367da6aee33 map) (object key) () collectiona8093152e673feb7aba1828c43532094        ()
hashmap示例代码:
public class hello {     public void testhashmapapis()     {         random r = new random();         hashmap601754196720ae8e56f6948b6d2ab654 map = new hashmap();         map.put(one, r.nextint(10));         map.put(two, r.nextint(10));         map.put(three, r.nextint(10));         system.out.println(map:+map );         iterator iter = map.entryset().iterator();         while(iter.hasnext())         {             map.entry entry = (map.entry)iter.next();             system.out.println(key : + entry.getkey() +,value:+entry.getvalue());         }         system.out.println(size:+map.size());         system.out.println(contains key two : +map.containskey(two));         system.out.println(contains key five : +map.containskey(five));         system.out.println(contains value 0 : +map.containsvalue(new integer(0)));         map.remove(three);         system.out.println(map:+map );         map.clear();         system.out.println((map.isempty()?map is empty:map is not empty) );     }     public static void main(string[] args) {         hello hello=new hello();         hello.testhashmapapis();     } }
运行结果:
map:{one=3, two=9, three=9} key : one,value:3 key : two,value:9 key : three,value:9 size:3 contains key two : true contains key five : false contains value 0 : false map:{one=3, two=9} map is empty
java8中hashmap源码分析:
public class hashmap<k,v> extends abstractmap<k,v> implements map<k,v>, cloneable, serializable { private static final long serialversionuid = 362498820763181265l; static final int default_initial_capacity = 1 << 4; // 初始大小为2的4次方 static final int maximum_capacity = 1 << 30;//最大为2的30次方 static final float default_load_factor = 0.75f;//加载因子是0.75 static final int treeify_threshold = 8; static final int untreeify_threshold = 6; static final int min_treeify_capacity = 64; //节点类 static class node<k,v> implements map.entry<k,v> { final int hash; final k key; v value; node<k, v> next; node(int hash, k key, v value, node<k, v> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } public final k getkey() { return key; } public final v getvalue() { return value; } public final string tostring() { return key + "=" + value; } public final int hashcode() { return objects.hashcode(key) ^ objects.hashcode(value); } public final v setvalue(v newvalue) { v oldvalue = value; value = newvalue; return oldvalue; } public final boolean equals(object o) { if (o == this) return true; if (o instanceof map.entry) { map.entry<?, ?> e = (map.entry<?, ?>) o; if (objects.equals(key, e.getkey()) && objects.equals(value, e.getvalue())) return true; } return false; } } //计算hash static final int hash(object key) { int h; return (key == null) ? 0 : (h = key.hashcode()) ^ (h >>> 16); } //返回类 static class<?> comparableclassfor(object x) { if (x instanceof comparable) { class<?> c; type[] ts, as; type t; parameterizedtype p; if ((c = x.getclass()) == string.class) // bypass checks return c; if ((ts = c.getgenericinterfaces()) != null) { for (int i = 0; i < ts.length; ++i) { if (((t = ts[i]) instanceof parameterizedtype) && ((p = (parameterizedtype)t).getrawtype() == comparable.class) && (as = p.getactualtypearguments()) != null && as.length == 1 && as[0] == c) // type arg is c return c; } } } return null; } @suppresswarnings({"rawtypes","unchecked"}) // for cast to comparable static int comparecomparables(class<?> kc, object k, object x) { return (x == null || x.getclass() != kc ? 0 : ((comparable)k).compareto(x)); } static final int tablesizefor(int cap) { int n = cap - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= maximum_capacity) ? maximum_capacity : n + 1; } transient node<k,v>[] table;//数据表 transient set<map.entry<k,v>> entryset;//实体集合 transient int size;//大小 transient int modcount;//用来实现fail-fast int threshold;//值为capacity * load factor final float loadfactor;//hashtable的加载因子 //构造函数,初始化容量大小和加载因子 public hashmap(int initialcapacity, float loadfactor) { if (initialcapacity < 0) throw new illegalargumentexception("illegal initial capacity: " + initialcapacity); if (initialcapacity > maximum_capacity) initialcapacity = maximum_capacity; if (loadfactor <= 0 || float.isnan(loadfactor)) throw new illegalargumentexception("illegal load factor: " + loadfactor); this.loadfactor = loadfactor; this.threshold = tablesizefor(initialcapacity); } //构造函数 初始化大小 public hashmap(int initialcapacity) { this(initialcapacity, default_load_factor); } //使用默认的加载因子 public hashmap() { this.loadfactor = default_load_factor; // all other fields defaulted } public hashmap(map<? extends k, ? extends v> m) { this.loadfactor = default_load_factor; putmapentries(m, false); } final void putmapentries(map<? extends k, ? extends v> m, boolean evict) { int s = m.size(); if (s > 0) { if (table == null) { // pre-size float ft = ((float)s / loadfactor) + 1.0f; int t = ((ft < (float)maximum_capacity) ? (int)ft : maximum_capacity); if (t > threshold) threshold = tablesizefor(t); } else if (s > threshold) resize(); for (map.entry<? extends k, ? extends v> e : m.entryset()) { k key = e.getkey(); v value = e.getvalue(); putval(hash(key), key, value, false, evict); } } } //返回大小 public int size() { return size; } //判断是否为空 public boolean isempty() { return size == 0; } //通过key获得值 public v get(object key) { node<k,v> e; return (e = getnode(hash(key), key)) == null ? null : e.value; } //通过hash和key获得节点 final node<k,v> getnode(int hash, object key) { node<k,v>[] tab; node<k,v> first, e; int n; k k; if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; if ((e = first.next) != null) { if (first instanceof treenode) return ((treenode<k,v>)first).gettreenode(hash, key); do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; } //是否含有某个key public boolean containskey(object key) { return getnode(hash(key), key) != null; } //如果之前存在key的value值,则替换掉 public v put(k key, v value) { return putval(hash(key), key, value, false, true); } final v putval(int hash, k key, v value, boolean onlyifabsent, boolean evict) { node<k,v>[] tab; node<k,v> p; int n, i; if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newnode(hash, key, value, null); else { node<k,v> e; k k; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; else if (p instanceof treenode) e = ((treenode<k,v>)p).puttreeval(this, tab, hash, key, value); else { for (int bincount = 0; ; ++bincount) { if ((e = p.next) == null) { p.next = newnode(hash, key, value, null); if (bincount >= treeify_threshold - 1) // -1 for 1st treeifybin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if (e != null) { // existing mapping for key v oldvalue = e.value; if (!onlyifabsent || oldvalue == null) e.value = value; afternodeaccess(e); return oldvalue; } } ++modcount; if (++size > threshold) resize(); afternodeinsertion(evict); return null; } //改变大小 final node<k,v>[] resize() { node<k,v>[] oldtab = table; int oldcap = (oldtab == null) ? 0 : oldtab.length; int oldthr = threshold; int newcap, newthr = 0; if (oldcap > 0) { if (oldcap >= maximum_capacity) { threshold = integer.max_value; return oldtab; } else if ((newcap = oldcap << 1) < maximum_capacity && oldcap >= default_initial_capacity) newthr = oldthr << 1; // double threshold } else if (oldthr > 0) // initial capacity was placed in threshold newcap = oldthr; else { // zero initial threshold signifies using defaults newcap = default_initial_capacity; newthr = (int)(default_load_factor * default_initial_capacity); } if (newthr == 0) { float ft = (float)newcap * loadfactor; newthr = (newcap < maximum_capacity && ft < (float)maximum_capacity ? (int)ft : integer.max_value); } threshold = newthr; @suppresswarnings({"rawtypes","unchecked"}) node<k,v>[] newtab = (node<k,v>[])new node[newcap]; table = newtab; if (oldtab != null) { for (int j = 0; j < oldcap; ++j) { node<k,v> e; if ((e = oldtab[j]) != null) { oldtab[j] = null; if (e.next == null) newtab[e.hash & (newcap - 1)] = e; else if (e instanceof treenode) ((treenode<k,v>)e).split(this, newtab, j, oldcap); else { // preserve order node<k,v> lohead = null, lotail = null; node<k,v> hihead = null, hitail = null; node<k,v> next; do { next = e.next; if ((e.hash & oldcap) == 0) { if (lotail == null) lohead = e; else lotail.next = e; lotail = e; } else { if (hitail == null) hihead = e; else hitail.next = e; hitail = e; } } while ((e = next) != null); if (lotail != null) { lotail.next = null; newtab[j] = lohead; } if (hitail != null) { hitail.next = null; newtab[j + oldcap] = hihead; } } } } } return newtab; } final void treeifybin(node<k,v>[] tab, int hash) { int n, index; node<k,v> e; if (tab == null || (n = tab.length) < min_treeify_capacity) resize(); else if ((e = tab[index = (n - 1) & hash]) != null) { treenode<k,v> hd = null, tl = null; do { treenode<k,v> p = replacementtreenode(e, null); if (tl == null) hd = p; else { p.prev = tl; tl.next = p; } tl = p; } while ((e = e.next) != null); if ((tab[index] = hd) != null) hd.treeify(tab); } } public void putall(map<? extends k, ? extends v> m) { putmapentries(m, true); } public v remove(object key) { node<k,v> e; return (e = removenode(hash(key), key, null, false, true)) == null ? null : e.value; } final node<k,v> removenode(int hash, object key, object value, boolean matchvalue, boolean movable) { node<k,v>[] tab; node<k,v> p; int n, index; if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null) { node<k,v> node = null, e; k k; v v; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) node = p; else if ((e = p.next) != null) { if (p instanceof treenode) node = ((treenode<k,v>)p).gettreenode(hash, key); else { do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { node = e; break; } p = e; } while ((e = e.next) != null); } } if (node != null && (!matchvalue || (v = node.value) == value || (value != null && value.equals(v)))) { if (node instanceof treenode) ((treenode<k,v>)node).removetreenode(this, tab, movable); else if (node == p) tab[index] = node.next; else p.next = node.next; ++modcount; --size; afternoderemoval(node); return node; } } return null; } public void clear() { node<k,v>[] tab; modcount++; if ((tab = table) != null && size > 0) { size = 0; for (int i = 0; i < tab.length; ++i) tab[i] = null; } } public boolean containsvalue(object value) { node<k,v>[] tab; v v; if ((tab = table) != null && size > 0) { for (int i = 0; i < tab.length; ++i) { for (node<k,v> e = tab[i]; e != null; e = e.next) { if ((v = e.value) == value || (value != null && value.equals(v))) return true; } } } return false; } public set<k> keyset() { set<k> ks; return (ks = keyset) == null ? (keyset = new keyset()) : ks; } final class keyset extends abstractset<k> { public final int size() { return size; } public final void clear() { hashmap.this.clear(); } public final iterator<k> iterator() { return new keyiterator(); } public final boolean contains(object o) { return containskey(o); } public final boolean remove(object key) { return removenode(hash(key), key, null, false, true) != null; } public final spliterator<k> spliterator() { return new keyspliterator<>(hashmap.this, 0, -1, 0, 0); } public final void foreach(consumer<? super k> action) { node<k,v>[] tab; if (action == null) throw new nullpointerexception(); if (size > 0 && (tab = table) != null) { int mc = modcount; for (int i = 0; i < tab.length; ++i) { for (node<k,v> e = tab[i]; e != null; e = e.next) action.accept(e.key); } if (modcount != mc) throw new concurrentmodificationexception(); } } } public collection<v> values() { collection<v> vs; return (vs = values) == null ? (values = new values()) : vs; } final class values extends abstractcollection<v> { public final int size() { return size; } public final void clear() { hashmap.this.clear(); } public final iterator<v> iterator() { return new valueiterator(); } public final boolean contains(object o) { return containsvalue(o); } public final spliterator<v> spliterator() { return new valuespliterator<>(hashmap.this, 0, -1, 0, 0); } public final void foreach(consumer<? super v> action) { node<k,v>[] tab; if (action == null) throw new nullpointerexception(); if (size > 0 && (tab = table) != null) { int mc = modcount; for (int i = 0; i < tab.length; ++i) { for (node<k,v> e = tab[i]; e != null; e = e.next) action.accept(e.value); } if (modcount != mc) throw new concurrentmodificationexception(); } } } public set<map.entry<k,v>> entryset() { set<map.entry<k,v>> es; return (es = entryset) == null ? (entryset = new entryset()) : es; } final class entryset extends abstractset<map.entry<k,v>> { public final int size() { return size; } public final void clear() { hashmap.this.clear(); } public final iterator<map.entry<k,v>> iterator() { return new entryiterator(); } public final boolean contains(object o) { if (!(o instanceof map.entry)) return false; map.entry<?,?> e = (map.entry<?,?>) o; object key = e.getkey(); node<k,v> candidate = getnode(hash(key), key); return candidate != null && candidate.equals(e); } public final boolean remove(object o) { if (o instanceof map.entry) { map.entry<?,?> e = (map.entry<?,?>) o; object key = e.getkey(); object value = e.getvalue(); return removenode(hash(key), key, value, true, true) != null; } return false; } public final spliterator<map.entry<k,v>> spliterator() { return new entryspliterator<>(hashmap.this, 0, -1, 0, 0); } public final void foreach(consumer<? super map.entry<k,v>> action) { node<k,v>[] tab; if (action == null) throw new nullpointerexception(); if (size > 0 && (tab = table) != null) { int mc = modcount; for (int i = 0; i < tab.length; ++i) { for (node<k,v> e = tab[i]; e != null; e = e.next) action.accept(e); } if (modcount != mc) throw new concurrentmodificationexception(); } } } // overrides of jdk8 map extension methods @override public v getordefault(object key, v defaultvalue) { node<k,v> e; return (e = getnode(hash(key), key)) == null ? defaultvalue : e.value; } @override public v putifabsent(k key, v value) { return putval(hash(key), key, value, true, true); } @override public boolean remove(object key, object value) { return removenode(hash(key), key, value, true, true) != null; } @override public boolean replace(k key, v oldvalue, v newvalue) { node<k,v> e; v v; if ((e = getnode(hash(key), key)) != null && ((v = e.value) == oldvalue || (v != null && v.equals(oldvalue)))) { e.value = newvalue; afternodeaccess(e); return true; } return false; } @override public v replace(k key, v value) { node<k,v> e; if ((e = getnode(hash(key), key)) != null) { v oldvalue = e.value; e.value = value; afternodeaccess(e); return oldvalue; } return null; } @override public v computeifabsent(k key, function<? super k, ? extends v> mappingfunction) { if (mappingfunction == null) throw new nullpointerexception(); int hash = hash(key); node<k,v>[] tab; node<k,v> first; int n, i; int bincount = 0; treenode<k,v> t = null; node<k,v> old = null; if (size > threshold || (tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((first = tab[i = (n - 1) & hash]) != null) { if (first instanceof treenode) old = (t = (treenode<k,v>)first).gettreenode(hash, key); else { node<k,v> e = first; k k; do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { old = e; break; } ++bincount; } while ((e = e.next) != null); } v oldvalue; if (old != null && (oldvalue = old.value) != null) { afternodeaccess(old); return oldvalue; } } v v = mappingfunction.apply(key); if (v == null) { return null; } else if (old != null) { old.value = v; afternodeaccess(old); return v; } else if (t != null) t.puttreeval(this, tab, hash, key, v); else { tab[i] = newnode(hash, key, v, first); if (bincount >= treeify_threshold - 1) treeifybin(tab, hash); } ++modcount; ++size; afternodeinsertion(true); return v; } public v computeifpresent(k key, bifunction<? super k, ? super v, ? extends v> remappingfunction) { if (remappingfunction == null) throw new nullpointerexception(); node<k,v> e; v oldvalue; int hash = hash(key); if ((e = getnode(hash, key)) != null && (oldvalue = e.value) != null) { v v = remappingfunction.apply(key, oldvalue); if (v != null) { e.value = v; afternodeaccess(e); return v; } else removenode(hash, key, null, false, true); } return null; } @override public v compute(k key, bifunction<? super k, ? super v, ? extends v> remappingfunction) { if (remappingfunction == null) throw new nullpointerexception(); int hash = hash(key); node<k,v>[] tab; node<k,v> first; int n, i; int bincount = 0; treenode<k,v> t = null; node<k,v> old = null; if (size > threshold || (tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((first = tab[i = (n - 1) & hash]) != null) { if (first instanceof treenode) old = (t = (treenode<k,v>)first).gettreenode(hash, key); else { node<k,v> e = first; k k; do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { old = e; break; } ++bincount; } while ((e = e.next) != null); } } v oldvalue = (old == null) ? null : old.value; v v = remappingfunction.apply(key, oldvalue); if (old != null) { if (v != null) { old.value = v; afternodeaccess(old); } else removenode(hash, key, null, false, true); } else if (v != null) { if (t != null) t.puttreeval(this, tab, hash, key, v); else { tab[i] = newnode(hash, key, v, first); if (bincount >= treeify_threshold - 1) treeifybin(tab, hash); } ++modcount; ++size; afternodeinsertion(true); } return v; } @override public v merge(k key, v value, bifunction<? super v, ? super v, ? extends v> remappingfunction) { if (value == null) throw new nullpointerexception(); if (remappingfunction == null) throw new nullpointerexception(); int hash = hash(key); node<k,v>[] tab; node<k,v> first; int n, i; int bincount = 0; treenode<k,v> t = null; node<k,v> old = null; if (size > threshold || (tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((first = tab[i = (n - 1) & hash]) != null) { if (first instanceof treenode) old = (t = (treenode<k,v>)first).gettreenode(hash, key); else { node<k,v> e = first; k k; do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { old = e; break; } ++bincount; } while ((e = e.next) != null); } } if (old != null) { v v; if (old.value != null) v = remappingfunction.apply(old.value, value); else v = value; if (v != null) { old.value = v; afternodeaccess(old); } else removenode(hash, key, null, false, true); return v; } if (value != null) { if (t != null) t.puttreeval(this, tab, hash, key, value); else { tab[i] = newnode(hash, key, value, first); if (bincount >= treeify_threshold - 1) treeifybin(tab, hash); } ++modcount; ++size; afternodeinsertion(true); } return value; } @override public void foreach(biconsumer<? super k, ? super v> action) { node<k,v>[] tab; if (action == null) throw new nullpointerexception(); if (size > 0 && (tab = table) != null) { int mc = modcount; for (int i = 0; i < tab.length; ++i) { for (node<k,v> e = tab[i]; e != null; e = e.next) action.accept(e.key, e.value); } if (modcount != mc) throw new concurrentmodificationexception(); } } @override public void replaceall(bifunction<? super k, ? super v, ? extends v> function) { node<k,v>[] tab; if (function == null) throw new nullpointerexception(); if (size > 0 && (tab = table) != null) { int mc = modcount; for (int i = 0; i < tab.length; ++i) { for (node<k,v> e = tab[i]; e != null; e = e.next) { e.value = function.apply(e.key, e.value); } } if (modcount != mc) throw new concurrentmodificationexception(); } } @suppresswarnings("unchecked") @override public object clone() { hashmap<k,v> result; try { result = (hashmap<k,v>)super.clone(); } catch (clonenotsupportedexception e) { // this shouldn't happen, since we are cloneable throw new internalerror(e); } result.reinitialize(); result.putmapentries(this, false); return result; } final float loadfactor() { return loadfactor; } final int capacity() { return (table != null) ? table.length : (threshold > 0) ? threshold : default_initial_capacity; } private void writeobject(java.io.objectoutputstream s) throws ioexception { int buckets = capacity(); // write out the threshold, loadfactor, and any hidden stuff s.defaultwriteobject(); s.writeint(buckets); s.writeint(size); internalwriteentries(s); } private void readobject(java.io.objectinputstream s) throws ioexception, classnotfoundexception { // read in the threshold (ignored), loadfactor, and any hidden stuff s.defaultreadobject(); reinitialize(); if (loadfactor <= 0 || float.isnan(loadfactor)) throw new invalidobjectexception("illegal load factor: " + loadfactor); s.readint(); // read and ignore number of buckets int mappings = s.readint(); // read number of mappings (size) if (mappings < 0) throw new invalidobjectexception("illegal mappings count: " + mappings); else if (mappings > 0) { // (if zero, use defaults) // size the table using given load factor only if within // range of 0.25...4.0 float lf = math.min(math.max(0.25f, loadfactor), 4.0f); float fc = (float)mappings / lf + 1.0f; int cap = ((fc < default_initial_capacity) ? default_initial_capacity : (fc >= maximum_capacity) ? maximum_capacity : tablesizefor((int)fc)); float ft = (float)cap * lf; threshold = ((cap < maximum_capacity && ft < maximum_capacity) ? (int)ft : integer.max_value); @suppresswarnings({"rawtypes","unchecked"}) node<k,v>[] tab = (node<k,v>[])new node[cap]; table = tab; // read the keys and values, and put the mappings in the hashmap for (int i = 0; i < mappings; i++) { @suppresswarnings("unchecked") k key = (k) s.readobject(); @suppresswarnings("unchecked") v value = (v) s.readobject(); putval(hash(key), key, value, false, false); } } } abstract class hashiterator { node<k,v> next; // next entry to return node<k,v> current; // current entry int expectedmodcount; // for fast-fail int index; // current slot hashiterator() { expectedmodcount = modcount; node<k,v>[] t = table; current = next = null; index = 0; if (t != null && size > 0) { // advance to first entry do {} while (index < t.length && (next = t[index++]) == null); } } public final boolean hasnext() { return next != null; } final node<k,v> nextnode() { node<k,v>[] t; node<k,v> e = next; if (modcount != expectedmodcount) throw new concurrentmodificationexception(); if (e == null) throw new nosuchelementexception(); if ((next = (current = e).next) == null && (t = table) != null) { do {} while (index < t.length && (next = t[index++]) == null); } return e; } public final void remove() { node<k,v> p = current; if (p == null) throw new illegalstateexception(); if (modcount != expectedmodcount) throw new concurrentmodificationexception(); current = null; k key = p.key; removenode(hash(key), key, null, false, false); expectedmodcount = modcount; } } final class keyiterator extends hashiterator implements iterator<k> { public final k next() { return nextnode().key; } } final class valueiterator extends hashiterator implements iterator<v> { public final v next() { return nextnode().value; } } final class entryiterator extends hashiterator implements iterator<map.entry<k,v>> { public final map.entry<k,v> next() { return nextnode(); } } static class hashmapspliterator<k,v> { final hashmap<k,v> map; node<k,v> current; // current node int index; // current index, modified on advance/split int fence; // one past last index int est; // size estimate int expectedmodcount; // for comodification checks hashmapspliterator(hashmap<k,v> m, int origin, int fence, int est, int expectedmodcount) { this.map = m; this.index = origin; this.fence = fence; this.est = est; this.expectedmodcount = expectedmodcount; } final int getfence() { // initialize fence and size on first use int hi; if ((hi = fence) < 0) { hashmap<k,v> m = map; est = m.size; expectedmodcount = m.modcount; node<k,v>[] tab = m.table; hi = fence = (tab == null) ? 0 : tab.length; } return hi; } public final long estimatesize() { getfence(); // force init return (long) est; } } static final class keyspliterator<k,v> extends hashmapspliterator<k,v> implements spliterator<k> { keyspliterator(hashmap<k,v> m, int origin, int fence, int est, int expectedmodcount) { super(m, origin, fence, est, expectedmodcount); } public keyspliterator<k,v> trysplit() { int hi = getfence(), lo = index, mid = (lo + hi) >>> 1; return (lo >= mid || current != null) ? null : new keyspliterator<>(map, lo, index = mid, est >>>= 1, expectedmodcount); } public void foreachremaining(consumer<? super k> action) { int i, hi, mc; if (action == null) throw new nullpointerexception(); hashmap<k,v> m = map; node<k,v>[] tab = m.table; if ((hi = fence) < 0) { mc = expectedmodcount = m.modcount; hi = fence = (tab == null) ? 0 : tab.length; } else mc = expectedmodcount; if (tab != null && tab.length >= hi && (i = index) >= 0 && (i < (index = hi) || current != null)) { node<k,v> p = current; current = null; do { if (p == null) p = tab[i++]; else { action.accept(p.key); p = p.next; } } while (p != null || i < hi); if (m.modcount != mc) throw new concurrentmodificationexception(); } } public boolean tryadvance(consumer<? super k> action) { int hi; if (action == null) throw new nullpointerexception(); node<k,v>[] tab = map.table; if (tab != null && tab.length >= (hi = getfence()) && index >= 0) { while (current != null || index < hi) { if (current == null) current = tab[index++]; else { k k = current.key; current = current.next; action.accept(k); if (map.modcount != expectedmodcount) throw new concurrentmodificationexception(); return true; } } } return false; } public int characteristics() { return (fence < 0 || est == map.size ? spliterator.sized : 0) | spliterator.distinct; } } static final class valuespliterator<k,v> extends hashmapspliterator<k,v> implements spliterator<v> { valuespliterator(hashmap<k,v> m, int origin, int fence, int est, int expectedmodcount) { super(m, origin, fence, est, expectedmodcount); } public valuespliterator<k,v> trysplit() { int hi = getfence(), lo = index, mid = (lo + hi) >>> 1; return (lo >= mid || current != null) ? null : new valuespliterator<>(map, lo, index = mid, est >>>= 1, expectedmodcount); } public void foreachremaining(consumer<? super v> action) { int i, hi, mc; if (action == null) throw new nullpointerexception(); hashmap<k,v> m = map; node<k,v>[] tab = m.table; if ((hi = fence) < 0) { mc = expectedmodcount = m.modcount; hi = fence = (tab == null) ? 0 : tab.length; } else mc = expectedmodcount; if (tab != null && tab.length >= hi && (i = index) >= 0 && (i < (index = hi) || current != null)) { node<k,v> p = current; current = null; do { if (p == null) p = tab[i++]; else { action.accept(p.value); p = p.next; } } while (p != null || i < hi); if (m.modcount != mc) throw new concurrentmodificationexception(); } } public boolean tryadvance(consumer<? super v> action) { int hi; if (action == null) throw new nullpointerexception(); node<k,v>[] tab = map.table; if (tab != null && tab.length >= (hi = getfence()) && index >= 0) { while (current != null || index < hi) { if (current == null) current = tab[index++]; else { v v = current.value; current = current.next; action.accept(v); if (map.modcount != expectedmodcount) throw new concurrentmodificationexception(); return true; } } } return false; } public int characteristics() { return (fence < 0 || est == map.size ? spliterator.sized : 0); } } static final class entryspliterator<k,v> extends hashmapspliterator<k,v> implements spliterator<map.entry<k,v>> { entryspliterator(hashmap<k,v> m, int origin, int fence, int est, int expectedmodcount) { super(m, origin, fence, est, expectedmodcount); } public entryspliterator<k,v> trysplit() { int hi = getfence(), lo = index, mid = (lo + hi) >>> 1; return (lo >= mid || current != null) ? null : new entryspliterator<>(map, lo, index = mid, est >>>= 1, expectedmodcount); } public void foreachremaining(consumer<? super map.entry<k,v>> action) { int i, hi, mc; if (action == null) throw new nullpointerexception(); hashmap<k,v> m = map; node<k,v>[] tab = m.table; if ((hi = fence) < 0) { mc = expectedmodcount = m.modcount; hi = fence = (tab == null) ? 0 : tab.length; } else mc = expectedmodcount; if (tab != null && tab.length >= hi && (i = index) >= 0 && (i < (index = hi) || current != null)) { node<k,v> p = current; current = null; do { if (p == null) p = tab[i++]; else { action.accept(p); p = p.next; } } while (p != null || i < hi); if (m.modcount != mc) throw new concurrentmodificationexception(); } } public boolean tryadvance(consumer<? super map.entry<k,v>> action) { int hi; if (action == null) throw new nullpointerexception(); node<k,v>[] tab = map.table; if (tab != null && tab.length >= (hi = getfence()) && index >= 0) { while (current != null || index < hi) { if (current == null) current = tab[index++]; else { node<k,v> e = current; current = current.next; action.accept(e); if (map.modcount != expectedmodcount) throw new concurrentmodificationexception(); return true; } } } return false; } public int characteristics() { return (fence < 0 || est == map.size ? spliterator.sized : 0) | spliterator.distinct; } } node<k,v> newnode(int hash, k key, v value, node<k,v> next) { return new node<>(hash, key, value, next); } // for conversion from treenodes to plain nodes node<k,v> replacementnode(node<k,v> p, node<k,v> next) { return new node<>(p.hash, p.key, p.value, next); } // create a tree bin node treenode<k,v> newtreenode(int hash, k key, v value, node<k,v> next) { return new treenode<>(hash, key, value, next); } // for treeifybin treenode<k,v> replacementtreenode(node<k,v> p, node<k,v> next) { return new treenode<>(p.hash, p.key, p.value, next); } void reinitialize() { table = null; entryset = null; keyset = null; values = null; modcount = 0; threshold = 0; size = 0; } // callbacks to allow linkedhashmap post-actions void afternodeaccess(node<k,v> p) { } void afternodeinsertion(boolean evict) { } void afternoderemoval(node<k,v> p) { } // called only from writeobject, to ensure compatible ordering. void internalwriteentries(java.io.objectoutputstream s) throws ioexception { node<k,v>[] tab; if (size > 0 && (tab = table) != null) { for (int i = 0; i < tab.length; ++i) { for (node<k,v> e = tab[i]; e != null; e = e.next) { s.writeobject(e.key); s.writeobject(e.value); } } } } static final class treenode<k,v> extends linkedhashmap.entry<k,v> { treenode<k,v> parent; // red-black tree links treenode<k,v> left; treenode<k,v> right; treenode<k,v> prev; // needed to unlink next upon deletion boolean red; treenode(int hash, k key, v val, node<k,v> next) { super(hash, key, val, next); } /** * returns root of tree containing this node. */ final treenode<k,v> root() { for (treenode<k,v> r = this, p;;) { if ((p = r.parent) == null) return r; r = p; } } /** * ensures that the given root is the first node of its bin. */ static <k,v> void moveroottofront(node<k,v>[] tab, treenode<k,v> root) { int n; if (root != null && tab != null && (n = tab.length) > 0) { int index = (n - 1) & root.hash; treenode<k,v> first = (treenode<k,v>)tab[index]; if (root != first) { node<k,v> rn; tab[index] = root; treenode<k,v> rp = root.prev; if ((rn = root.next) != null) ((treenode<k,v>)rn).prev = rp; if (rp != null) rp.next = rn; if (first != null) first.prev = root; root.next = first; root.prev = null; } assert checkinvariants(root); } } final treenode<k,v> find(int h, object k, class<?> kc) { treenode<k,v> p = this; do { int ph, dir; k pk; treenode<k,v> pl = p.left, pr = p.right, q; if ((ph = p.hash) > h) p = pl; else if (ph < h) p = pr; else if ((pk = p.key) == k || (k != null && k.equals(pk))) return p; else if (pl == null) p = pr; else if (pr == null) p = pl; else if ((kc != null || (kc = comparableclassfor(k)) != null) && (dir = comparecomparables(kc, k, pk)) != 0) p = (dir < 0) ? pl : pr; else if ((q = pr.find(h, k, kc)) != null) return q; else p = pl; } while (p != null); return null; } final treenode<k,v> gettreenode(int h, object k) { return ((parent != null) ? root() : this).find(h, k, null); } static int tiebreakorder(object a, object b) { int d; if (a == null || b == null || (d = a.getclass().getname(). compareto(b.getclass().getname())) == 0) d = (system.identityhashcode(a) <= system.identityhashcode(b) ? -1 : 1); return d; } final void treeify(node<k,v>[] tab) { treenode<k,v> root = null; for (treenode<k,v> x = this, next; x != null; x = next) { next = (treenode<k,v>)x.next; x.left = x.right = null; if (root == null) { x.parent = null; x.red = false; root = x; } else { k k = x.key; int h = x.hash; class<?> kc = null; for (treenode<k,v> p = root;;) { int dir, ph; k pk = p.key; if ((ph = p.hash) > h) dir = -1; else if (ph < h) dir = 1; else if ((kc == null && (kc = comparableclassfor(k)) == null) || (dir = comparecomparables(kc, k, pk)) == 0) dir = tiebreakorder(k, pk); treenode<k,v> xp = p; if ((p = (dir <= 0) ? p.left : p.right) == null) { x.parent = xp; if (dir <= 0) xp.left = x; else xp.right = x; root = balanceinsertion(root, x); break; } } } } moveroottofront(tab, root); } final node<k,v> untreeify(hashmap<k,v> map) { node<k,v> hd = null, tl = null; for (node<k,v> q = this; q != null; q = q.next) { node<k,v> p = map.replacementnode(q, null); if (tl == null) hd = p; else tl.next = p; tl = p; } return hd; } final treenode<k,v> puttreeval(hashmap<k,v> map, node<k,v>[] tab, int h, k k, v v) { class<?> kc = null; boolean searched = false; treenode<k,v> root = (parent != null) ? root() : this; for (treenode<k,v> p = root;;) { int dir, ph; k pk; if ((ph = p.hash) > h) dir = -1; else if (ph < h) dir = 1; else if ((pk = p.key) == k || (k != null && k.equals(pk))) return p; else if ((kc == null && (kc = comparableclassfor(k)) == null) || (dir = comparecomparables(kc, k, pk)) == 0) { if (!searched) { treenode<k,v> q, ch; searched = true; if (((ch = p.left) != null && (q = ch.find(h, k, kc)) != null) || ((ch = p.right) != null && (q = ch.find(h, k, kc)) != null)) return q; } dir = tiebreakorder(k, pk); } treenode<k,v> xp = p; if ((p = (dir <= 0) ? p.left : p.right) == null) { node<k,v> xpn = xp.next; treenode<k,v> x = map.newtreenode(h, k, v, xpn); if (dir <= 0) xp.left = x; else xp.right = x; xp.next = x; x.parent = x.prev = xp; if (xpn != null) ((treenode<k,v>)xpn).prev = x; moveroottofront(tab, balanceinsertion(root, x)); return null; } } } final void removetreenode(hashmap<k,v> map, node<k,v>[] tab, boolean movable) { int n; if (tab == null || (n = tab.length) == 0) return; int index = (n - 1) & hash; treenode<k,v> first = (treenode<k,v>)tab[index], root = first, rl; treenode<k,v> succ = (treenode<k,v>)next, pred = prev; if (pred == null) tab[index] = first = succ; else pred.next = succ; if (succ != null) succ.prev = pred; if (first == null) return; if (root.parent != null) root = root.root(); if (root == null || root.right == null || (rl = root.left) == null || rl.left == null) { tab[index] = first.untreeify(map); // too small return; } treenode<k,v> p = this, pl = left, pr = right, replacement; if (pl != null && pr != null) { treenode<k,v> s = pr, sl; while ((sl = s.left) != null) // find successor s = sl; boolean c = s.red; s.red = p.red; p.red = c; // swap colors treenode<k,v> sr = s.right; treenode<k,v> pp = p.parent; if (s == pr) { // p was s's direct parent p.parent = s; s.right = p; } else { treenode<k,v> sp = s.parent; if ((p.parent = sp) != null) { if (s == sp.left) sp.left = p; else sp.right = p; } if ((s.right = pr) != null) pr.parent = s; } p.left = null; if ((p.right = sr) != null) sr.parent = p; if ((s.left = pl) != null) pl.parent = s; if ((s.parent = pp) == null) root = s; else if (p == pp.left) pp.left = s; else pp.right = s; if (sr != null) replacement = sr; else replacement = p; } else if (pl != null) replacement = pl; else if (pr != null) replacement = pr; else replacement = p; if (replacement != p) { treenode<k,v> pp = replacement.parent = p.parent; if (pp == null) root = replacement; else if (p == pp.left) pp.left = replacement; else pp.right = replacement; p.left = p.right = p.parent = null; } treenode<k,v> r = p.red ? root : balancedeletion(root, replacement); if (replacement == p) { // detach treenode<k,v> pp = p.parent; p.parent = null; if (pp != null) { if (p == pp.left) pp.left = null; else if (p == pp.right) pp.right = null; } } if (movable) moveroottofront(tab, r); } final void split(hashmap<k,v> map, node<k,v>[] tab, int index, int bit) { treenode<k,v> b = this; // relink into lo and hi lists, preserving order treenode<k,v> lohead = null, lotail = null; treenode<k,v> hihead = null, hitail = null; int lc = 0, hc = 0; for (treenode<k,v> e = b, next; e != null; e = next) { next = (treenode<k,v>)e.next; e.next = null; if ((e.hash & bit) == 0) { if ((e.prev = lotail) == null) lohead = e; else lotail.next = e; lotail = e; ++lc; } else { if ((e.prev = hitail) == null) hihead = e; else hitail.next = e; hitail = e; ++hc; } } if (lohead != null) { if (lc <= untreeify_threshold) tab[index] = lohead.untreeify(map); else { tab[index] = lohead; if (hihead != null) // (else is already treeified) lohead.treeify(tab); } } if (hihead != null) { if (hc <= untreeify_threshold) tab[index + bit] = hihead.untreeify(map); else { tab[index + bit] = hihead; if (lohead != null) hihead.treeify(tab); } } } /* ------------------------------------------------------------ */ // red-black tree methods, all adapted from clr static <k,v> treenode<k,v> rotateleft(treenode<k,v> root, treenode<k,v> p) { treenode<k,v> r, pp, rl; if (p != null && (r = p.right) != null) { if ((rl = p.right = r.left) != null) rl.parent = p; if ((pp = r.parent = p.parent) == null) (root = r).red = false; else if (pp.left == p) pp.left = r; else pp.right = r; r.left = p; p.parent = r; } return root; } static <k,v> treenode<k,v> rotateright(treenode<k,v> root, treenode<k,v> p) { treenode<k,v> l, pp, lr; if (p != null && (l = p.left) != null) { if ((lr = p.left = l.right) != null) lr.parent = p; if ((pp = l.parent = p.parent) == null) (root = l).red = false; else if (pp.right == p) pp.right = l; else pp.left = l; l.right = p; p.parent = l; } return root; } static <k,v> treenode<k,v> balanceinsertion(treenode<k,v> root, treenode<k,v> x) { x.red = true; for (treenode<k,v> xp, xpp, xppl, xppr;;) { if ((xp = x.parent) == null) { x.red = false; return x; } else if (!xp.red || (xpp = xp.parent) == null) return root; if (xp == (xppl = xpp.left)) { if ((xppr = xpp.right) != null && xppr.red) { xppr.red = false; xp.red = false; xpp.red = true; x = xpp; } else { if (x == xp.right) { root = rotateleft(root, x = xp); xpp = (xp = x.parent) == null ? null : xp.parent; } if (xp != null) { xp.red = false; if (xpp != null) { xpp.red = true; root = rotateright(root, xpp); } } } } else { if (xppl != null && xppl.red) { xppl.red = false; xp.red = false; xpp.red = true; x = xpp; } else { if (x == xp.left) { root = rotateright(root, x = xp); xpp = (xp = x.parent) == null ? null : xp.parent; } if (xp != null) { xp.red = false; if (xpp != null) { xpp.red = true; root = rotateleft(root, xpp); } } } } } } static <k,v> treenode<k,v> balancedeletion(treenode<k,v> root, treenode<k,v> x) { for (treenode<k,v> xp, xpl, xpr;;) { if (x == null || x == root) return root; else if ((xp = x.parent) == null) { x.red = false; return x; } else if (x.red) { x.red = false; return root; } else if ((xpl = xp.left) == x) { if ((xpr = xp.right) != null && xpr.red) { xpr.red = false; xp.red = true; root = rotateleft(root, xp); xpr = (xp = x.parent) == null ? null : xp.right; } if (xpr == null) x = xp; else { treenode<k,v> sl = xpr.left, sr = xpr.right; if ((sr == null || !sr.red) && (sl == null || !sl.red)) { xpr.red = true; x = xp; } else { if (sr == null || !sr.red) { if (sl != null) sl.red = false; xpr.red = true; root = rotateright(root, xpr); xpr = (xp = x.parent) == null ? null : xp.right; } if (xpr != null) { xpr.red = (xp == null) ? false : xp.red; if ((sr = xpr.right) != null) sr.red = false; } if (xp != null) { xp.red = false; root = rotateleft(root, xp); } x = root; } } } else { // symmetric if (xpl != null && xpl.red) { xpl.red = false; xp.red = true; root = rotateright(root, xp); xpl = (xp = x.parent) == null ? null : xp.left; } if (xpl == null) x = xp; else { treenode<k,v> sl = xpl.left, sr = xpl.right; if ((sl == null || !sl.red) && (sr == null || !sr.red)) { xpl.red = true; x = xp; } else { if (sl == null || !sl.red) { if (sr != null) sr.red = false; xpl.red = true; root = rotateleft(root, xpl); xpl = (xp = x.parent) == null ? null : xp.left; } if (xpl != null) { xpl.red = (xp == null) ? false : xp.red; if ((sl = xpl.left) != null) sl.red = false; } if (xp != null) { xp.red = false; root = rotateright(root, xp); } x = root; } } } } } /** * recursive invariant check */ static <k,v> boolean checkinvariants(treenode<k,v> t) { treenode<k,v> tp = t.parent, tl = t.left, tr = t.right, tb = t.prev, tn = (treenode<k,v>)t.next; if (tb != null && tb.next != t) return false; if (tn != null && tn.prev != t) return false; if (tp != null && t != tp.left && t != tp.right) return false; if (tl != null && (tl.parent != t || tl.hash > t.hash)) return false; if (tr != null && (tr.parent != t || tr.hash < t.hash)) return false; if (t.red && tl != null && tl.red && tr != null && tr.red) return false; if (tl != null && !checkinvariants(tl)) return false; if (tr != null && !checkinvariants(tr)) return false; return true; } } }
以上就是java集合之hashmap详解的详细内容。
其它类似信息

推荐信息