您好,欢迎访问一九零五行业门户网

手把手带你使用Redis+Bitmap实现亿级海量数据统计

本篇文章是redis的实战篇,介绍一下使用redis+bitmap实现亿级海量数据统计的方法,希望对大家有所帮助!
在移动应用的业务场景中,我们需要保存这样的信息:一个 key 关联了一个数据集合。【相关推荐:redis视频教程】
常见的场景如下:
给一个 userid ,判断用户登陆状态;显示用户某个月的签到次数和首次签到时间;两亿用户最近 7 天的签到情况,统计 7 天内连续签到的用户总数;通常情况下,我们面临的用户数量以及访问量都是巨大的,比如百万、千万级别的用户数量,或者千万级别、甚至亿级别的访问信息。
所以,我们必须要选择能够非常高效地统计大量数据(例如亿级)的集合类型。
如何选择合适的数据集合,我们首先要了解常用的统计模式,并运用合理的数据了性来解决实际问题。
四种统计类型:
二值状态统计;
聚合统计;
排序统计;
基数统计。
本文将由二值状态统计类型作为实战篇系列的开篇,文中将用到 string、set、zset、list、hash 以外的拓展数据类型 bitmap 来实现。
文章涉及到的指令可以通过在线 redis 客户端运行调试,地址:try.redis.io/,超方便的说。
寄语多分享多付出,前期多给别人创造价值并且不计回报,从长远来看,这些付出都会成倍的回报你。
特别是刚开始跟别人合作的时候,不要去计较短期的回报,没有太大意义,更多的是锻炼自己的视野、视角以及解决问题的能力。
二值状态统计码哥,什么是二值状态统计呀?
也就是集合中的元素的值只有 0 和 1 两种,在签到打卡和用户是否登陆的场景中,只需记录签到(1)或 未签到(0),已登录(1)或未登陆(0)。
假如我们在判断用户是否登陆的场景中使用 redis 的 string 类型实现(key -> userid,value -> 0 表示下线,1 - 登陆),假如存储 100 万个用户的登陆状态,如果以字符串的形式存储,就需要存储 100 万个字符串了,内存开销太大。
码哥,为什么 string 类型内存开销大?
string 类型除了记录实际数据以外,还需要额外的内存记录数据长度、空间使用等信息。
当保存的数据包含字符串,string 类型就使用简单动态字符串(sds)结构体来保存,如下图所示:
len:占 4 个字节,表示 buf 的已用长度。alloc:占 4 个字节,表示 buf 实际分配的长度,通常 > len。buf:字节数组,保存实际的数据,redis 自动在数组最后加上一个 “\0”,额外占用一个字节的开销。所以,在 sds 中除了 buf 保存实际的数据, len 与 alloc 就是额外的开销。
另外,还有一个 redisobject 结构的开销,因为 redis 的数据类型有很多,而且,不同数据类型都有些相同的元数据要记录(比如最后一次访问的时间、被引用的次数等)。
所以,redis 会用一个 redisobject 结构体来统一记录这些元数据,同时指向实际数据。
对于二值状态场景,我们就可以利用 bitmap 来实现。比如登陆状态我们用一个 bit 位表示,一亿个用户也只占用 一亿 个 bit 位内存 ≈ (100000000 / 8/ 1024/1024)12 mb。
大概的空间占用计算公式是:($offset/8/1024/1024) mb
什么是 bitmap 呢?
bitmap 的底层数据结构用的是 string 类型的 sds 数据结构来保存位数组,redis 把每个字节数组的 8 个 bit 位利用起来,每个 bit 位 表示一个元素的二值状态(不是 0 就是 1)。
可以将 bitmap 看成是一个 bit 为单位的数组,数组的每个单元只能存储 0 或者 1,数组的下标在 bitmap 中叫做 offset 偏移量。
为了直观展示,我们可以理解成 buf 数组的每个字节用一行表示,每一行有 8 个 bit 位,8 个格子分别表示这个字节中的 8 个 bit 位,如下图所示:
8 个 bit 组成一个 byte,所以 bitmap 会极大地节省存储空间。 这就是 bitmap 的优势。
判断用户登陆态怎么用 bitmap 来判断海量用户中某个用户是否在线呢?
bitmap 提供了 getbit、setbit 操作,通过一个偏移值 offset 对 bit 数组的 offset 位置的 bit 位进行读写操作,需要注意的是 offset 从 0 开始。
只需要一个 key = login_status 表示存储用户登陆状态集合数据, 将用户 id 作为 offset,在线就设置为 1,下线设置 0。通过 getbit判断对应的用户是否在线。 50000 万 用户只需要 6 mb 的空间。
setbit 命令
setbit <key> <offset> <value>
设置或者清空 key 的 value 在 offset 处的 bit 值(只能是 0 或者 1)。
getbit 命令
getbit <key> <offset>
获取 key 的 value 在 offset 处的 bit 位的值,当 key 不存在时,返回 0。
假如我们要判断 id = 10086 的用户的登陆情况:
第一步,执行以下指令,表示用户已登录。
setbit login_status 10086 1
第二步,检查该用户是否登陆,返回值 1 表示已登录。
getbit login_status 10086
第三步,登出,将 offset 对应的 value 设置成 0。
setbit login_status 10086 0
用户每个月的签到情况在签到统计中,每个用户每天的签到用 1 个 bit 位表示,一年的签到只需要 365 个 bit 位。一个月最多只有 31 天,只需要 31 个 bit 位即可。
比如统计编号 89757 的用户在 2021 年 5 月份的打卡情况要如何进行?
key 可以设计成 uid:sign:{userid}:{yyyymm},月份的每一天的值 - 1 可以作为 offset(因为 offset 从 0 开始,所以 offset = 日期 - 1)。
第一步,执行下面指令表示记录用户在 2021 年 5 月 16 号打卡。
setbit uid:sign:89757:202105 15 1
第二步,判断编号 89757 用户在 2021 年 5 月 16 号是否打卡。
getbit uid:sign:89757:202105 15
第三步,统计该用户在 5 月份的打卡次数,使用 bitcount 指令。该指令用于统计给定的 bit 数组中,值 = 1 的 bit 位的数量。
bitcount uid:sign:89757:202105
这样我们就可以实现用户每个月的打卡情况了,是不是很赞。
如何统计这个月首次打卡时间呢?
redis 提供了 bitpos key bitvalue [start] [end]指令,返回数据表示 bitmap 中第一个值为 bitvalue 的 offset 位置。
在默认情况下, 命令将检测整个位图, 用户可以通过可选的 start 参数和 end 参数指定要检测的范围。
所以我们可以通过执行以下指令来获取 userid = 89757 在 2021 年 5 月份首次打卡日期:
bitpos uid:sign:89757:202105 1
需要注意的是,我们需要将返回的 value + 1 ,因为 offset 从 0 开始。
连续签到用户总数在记录了一个亿的用户连续 7 天的打卡数据,如何统计出这连续 7 天连续打卡用户总数呢?
我们把每天的日期作为 bitmap 的 key,userid 作为 offset,若是打卡则将 offset 位置的 bit 设置成 1。
key 对应的集合的每个 bit 位的数据则是一个用户在该日期的打卡记录。
一共有 7 个这样的 bitmap,如果我们能对这 7 个 bitmap 的对应的 bit 位做 『与』运算。
同样的 userid offset 都是一样的,当一个 userid 在 7 个 bitmap 对应对应的 offset 位置的 bit = 1 就说明该用户 7 天连续打卡。
结果保存到一个新 bitmap 中,我们再通过 bitcount 统计 bit = 1 的个数便得到了连续打卡 7 天的用户总数了。
redis 提供了 bitop operation destkey key [key ...]这个指令用于对一个或者多个 键 = key 的 bitmap 进行位元操作。
opration 可以是 and、or、not、xor。当 bitop 处理不同长度的字符串时,较短的那个字符串所缺少的部分会被看作 0 。空的 key 也被看作是包含 0 的字符串序列。
便于理解,如下图所示:
3 个 bitmap,对应的 bit 位做「与」操作,结果保存到新的 bitmap 中。
操作指令表示将 三个 bitmap 进行 and 操作,并将结果保存到 destmap 中。接着对 destmap 执行 bitcount 统计。
// 与操作bitop and destmap bitmap:01 bitmap:02 bitmap:03// 统计 bit 位 = 1 的个数bitcount destmap
简单计算下 一个一亿个位的 bitmap占用的内存开销,大约占 12 mb 的内存(10^8/8/1024/1024),7 天的 bitmap 的内存开销约为 84 mb。同时我们最好给 bitmap 设置过期时间,让 redis 删除过期的打卡数据,节省内存。
小结思路才是最重要,当我们遇到的统计场景只需要统计数据的二值状态,比如用户是否存在、 ip 是否是黑名单、以及签到打卡统计等场景就可以考虑使用 bitmap。
只需要一个 bit 位就能表示 0 和 1。在统计海量数据的时候将大大减少内存占用。
原文地址:https://juejin.cn/post/6999908907791417351
作者:码哥字节
更多编程相关知识,请访问:编程视频!!
以上就是手把手带你使用redis+bitmap实现亿级海量数据统计的详细内容。
其它类似信息

推荐信息