您好,欢迎访问一九零五行业门户网

信息熵的计算公式

信息是个很抽象的概念。人们常常说信息很多,或者信息较少,但却很难说清楚信息到底有多少。比如一本五十万字的中文书到底有多少信息量。
直到1948年,香农提出了“信息熵”的概念,才解决了对信息的量化度量问题。信息熵这个词是c.e.香农从热力学中借用过来的。热力学中的热熵是表示分子状态混乱程度的物理量。香农用信息熵的概念来描述信源的不确定度。(推荐学习:php视频教程)
信息论之父克劳德·艾尔伍德·香农第一次用数学语言阐明了概率与信息冗余度的关系。
信息论之父 c. e. shannon 在 1948 年发表的论文“通信的数学理论( a mathematical theory of communication )”中指出,任何信息都存在冗余,冗余大小与信息中每个符号(数字、字母或单词)的出现概率或者说不确定性有关。
shannon 借鉴了热力学的概念,把信息中排除了冗余后的平均信息量称为“信息熵”,并给出了计算信息熵的数学表达式。
信息含义
现代定义
信息是物质、能量、信息及其属性的标示。【逆维纳信息定义】
信息是确定性的增加。【逆香农信息定义】
信息是事物现象及其属性标识的集合。【2002年】
最初定义
信息理论的鼻祖之一claude e. shannon把信息(熵)定义为离散随机事件的出现概率。
所谓信息熵,是一个数学上颇为抽象的概念,在这里不妨把信息熵理解成某种特定信息的出现概率。而信息熵和热力学熵是紧密相关的。根据charles h. bennett对maxwell's demon的重新解释,对信息的销毁是一个不可逆过程,所以销毁信息是符合热力学第二定律的。而产生信息,则是为系统引入负(热力学)熵的过程。所以信息熵的符号与热力学熵应该是相反的。
一般而言,当一种信息出现概率更高的时候,表明它被传播得更广泛,或者说,被引用的程度更高。我们可以认为,从信息传播的角度来看,信息熵可以表示信息的价值。这样子我们就有一个衡量信息价值高低的标准,可以做出关于知识流通问题的更多推论。
计算公式
h(x) = e[i(xi)] = e[ log(2,1/p(xi)) ] = -∑p(xi)log(2,p(xi)) (i=1,2,..n)
其中,x表示随机变量,与之相对应的是所有可能输出的集合,定义为符号集,随机变量的输出用x表示。p(x)表示输出概率函数。变量的不确定性越大,熵也就越大,把它搞清楚所需要的信息量也就越大.
更多php相关技术文章,请访问php图文教程栏目进行学习!
以上就是信息熵的计算公式的详细内容。
其它类似信息

推荐信息