您好,欢迎访问一九零五行业门户网

影响制氮机稳定的因素,储粮制氮机的工艺原理和制氮机的破除氧化物介绍

现在制氮机的应用可以说是相当的广泛的额,我们生活中就经常看到它的身影,下面我们主要是来介绍下影响制氮机稳定的因素,储粮制氮机的工艺原理和制氮机的破除氧化物。
制氮机是涉及机、电、仪表集一体高科技术产品,在*使用中设备的稳定尤其重要。我们从制氮机的组成不难看出,影响稳定性有以下两点:
1、 控制阀门:对于变压吸附制氮机来讲,阀门必须具有以下几点性能:材质性能好,不漏气;在接受控制信号的0.02秒内完成开或关动作;能承受频繁的开、关,保证足够长的使用寿命。
正常的使用情况下,每只程控阀门在每一个周期(120秒左右)必须开关一次,按制氮机每年300个工作日计算,每天24小时连续动行,吸附与解吸周期为4分钟计,那么每只阀门每年需要开、关20多万次。而只要其中一只阀门出现故障都会影响整台设备正常。所以阀门连续使用寿命是制氮机稳定可靠的zui重要一环节。
2、碳分子筛是变压附制氮机核心: 2.1、碳分子筛性能指标:a.硬度b.产氮量(nm3/t-h)c.回收率(n2/air)%d.填装密度。
以上指标碳分子筛生产厂家均已在出厂时注明,但只能作为参考数据,如何使碳分子筛发挥zui大效能,这跟每个制氮厂家的工艺流程以及吸附塔高径比有着直接的关系,同时保证分子筛的使用寿命就很有讲究: 2.2、 碳分子筛装填技术: 碳分子筛装入吸附塔时必须具备专门的填装技术,否则极易粉化并导致失效,从工艺流程我们可以发现,当压缩空气高速从吸附塔底部进入时,如果没有特殊的气体分布器,分子筛受到气流的强力冲击、摩擦,容易造成分子筛的粉化。另外分子筛填入吸附塔内是不可能紧密,在使用一段时间后,分子筛之间的空隙在减小,慢慢下沉,如果没有分子筛自动*装置和压紧装置,吸附塔上部就会出现明显空间。当压缩空气进入吸附塔下部时,分子筛就会在气流的冲击作用力下,在短时间内发生快速的位移,导致分子筛互相碰撞、摩擦并与吸附塔壁发生撞击,这样就容易使分子筛粉化失效。
2.3、空气中油、水对分子筛的影响:由于空气含一定水和油蒸汽,经过压缩机后,如果不经严格空气净化处理,油蒸汽容易被碳分子筛所吸附,并难以脱附,填塞分子筛孔径,导致分子筛“中毒”失效。所以在压缩空气进入吸附塔前设置严格空气净化装置,是保证分子筛使用寿命*的一环。水对分子筛来讲虽然不是致命的,但会使分子筛吸附“负荷”增加,即影响其吸附o2、co2之能力,因此压缩空气干燥除水,是提高分子筛吸附能力和稳定不可忽视的问题。
利用深冷法制氧,首先要将空气液化,再根据氧、氮沸点不同将它们分离开来。空气液化必须将温度降到-140.6℃以下。一般空气分离是在-172~-194℃的温度范围进行的。用深冷法制氧的设备具有以下特点:1)低温换热器、精馏塔等低温容器及管道置于保冷箱内,并充填有热导率低的绝热材料,防止从周围传入热量,减少冷损,否则设备无法运行;2)用于制造低温设备的材料,要求在低温下有足够的强度和韧性,以及有良好的焊接、加工性能。常用铝合金、铜合金、不锈钢等材料;3)空气中高沸点的杂质,例如水分、二氧化碳等,应在常温时预先清除。否则会堵塞设备内的通道,使装置无法工作;4)空气中的乙炔和碳氢化合物进入空分塔内,积聚到一定程度,会影响安全运行,甚至发生爆炸事故。因此,必须设置净化设备将其清除5)贮存低温液体的密闭容器,当外界有热量传入时,会有部分低温液体吸热而气化,压力会自动升高。为防止超压,必须设置可靠的安全装置;6)低温液体漏入基础,会将基础冻裂,设备倾斜。因此必须保证设备、管道和阀门的密封性,要考虑热胀冷缩可能产生的应力和变形;7)被液氧浸渍过的木材、焦炭等多孔有机物质,当接触火源或给以一定的冲击力时,会发生激烈的燃爆。因此,冷箱内不允许有多孔性的有机物质。对液氧的排放,应预先考虑有专门的液氧排放管路和容器,不能走地沟;8)低温液体*冲击碳素钢板,会使钢板脆裂。因此,排放低温液体的管道及排放槽不能采用碳素钢制品;9)氮气、氩气是窒息性气体,其液体排放管应引至室外。气体排放管应有一定的排放高度,排放口不能朝向平台楼梯;10)氧气是强烈的助燃剂,其排放管不能直接排在不通风的厂房内。
氮气作为保护气体,在焊接中的主要作用是排除焊接过程中的氧气 ,增加可焊性,防止再氧化。焊接可靠,除了选择合适的焊料,一般还需要焊剂的配合,焊剂主要是去除焊接前sma组件焊接部位的氧化物以及防止焊接部位的再氧化,并形成焊料优良的润湿条件,提高可焊性。
试验证明,在氮气保护下加入甲酸后即能起到如上作用。采用隧道式焊接槽结构的环氮波峰焊接机,其机身主要是一个隧道式的焊接加工槽,上盖由几块可打开的玻璃组成,确保氧气不能进入加工槽内。当氮气通入焊接,利用保护气体和空气的不同比重,氮气会自动把空赶出焊接区。在焊接进行过程中,pcb板会不断带入氧气注入焊接区内,因此要不断将氮气注入焊接区内,使氧气不断排到出口。 氮气加甲酸技术一般应用于红外加强力对流混合的隧道式再流焊炉中,进口和出口一般设计成开启式,而在其内部有多道门帘,密封性好,能使组件的预热、干燥、再流焊接冷却都在隧道内完成。
在这种混合气氛下,使用的焊膏中不需含有活化剂,焊后无残留物留在pcb板上。减少氧化,减少焊球的形成,不存在桥接,对精细间距器件的焊接极为有利。节省了清洗设备,保护了地球环境。由氮气所带来的附加成本容易从节约的成本中收回,成本节约从缺陷减少及其所需人工节约而来氮气保护下进行波峰焊和再流焊,将成为表面组装中技术的主流,环氮波峰焊机与甲酸技术相结合,环氮再流焊机活性极低的焊膏、甲酸相结合,能去除清洗工艺。当今迅速发展的smt焊接技术中,遇到的主要问题是如何破除氧化物,获得基材的纯净表面,达到可靠的连接。
其它类似信息

推荐信息