1,要做大数据分析需学什么2,大数据分析应该掌握哪些基础知识3,成为一名数据分析师需要会哪些技能4,大数据分析学习什么内容好学吗5,数据分析师需要学习哪里内容1,要做大数据分析需学什么
虽然现在数据分析和大数据是很热门的两个方向,但是大数据分析方向还是很多,要看你想去哪个行业,比如说互联网、金融、零售、医学、生物等等,不同行业有不同的要求,有的偏于技术,有的偏于实务。大数据属多个学科交织而形成的新兴学科,因此目前并无“大数据”这个专业。通常从事这一行业相关工作的建议选择“计算机科学”或 “统计学”专业,强调算术,分析及计算机应用之结合能力。
2,大数据分析应该掌握哪些基础知识
随着互联网行业的不断发展。很多人想要从事互联网方面的工作,现在非常流行的就是大数据,你了解大数据是做什么的吗?学习大数据需要掌握哪些知识?大数据在未来有很大的发展机会,每个岗位需要具备的能力是不同的。下面小编为大家介绍学习大数据需要掌握的知识。大数据业务流程有四个基本步骤,即业务理解,数据准备,数据挖掘和分析应用程序。该过程分为三个功能区:大数据系统开发,整个操作系统的构建和维护,数据准备,平台和工具开发。大数据挖掘,负责关键模型应用和研究工作。大数据分析应用程序:两者都是外部需求的访问者也是解决方案的输出,并且在许多情况下还将承担整体协调的作用。大数据提取转换和加载过程(etl)是大数据的重要处理环节。提取是从业务数据库中提取数据。转换是根据业务逻辑规则处理数据的过程。负载是将数据加载到数据仓库的过程中。数据提取工具实现了db到hdfs的数据导入功能,并提供了高效的分布式并行处理能力。可以使用数据库分区,字段分区和基于分页的并行批处理将db数据提取到hdfs文件系统中,从而可以有效地按字段解析分区数据。数据收集可以是历史数据采集或实时数据采集。它可以收集存储在数据库中的结构化数据,或收集非结构化数据,如文本,图片,图像,音频,视频等。结构变化较大的半结构化数据,可以在数据后直接存储在流量状态分析平台上收集完成。数据分析师需要的技能大致有这些:excel、sql、统计学及spss、python/r等。建议从excel开始,因为excel是使用最多,也是最强大的数据分析工具,入门简单,因为大部分人都接触过excel。
3,成为一名数据分析师需要会哪些技能
数据分析, 数据挖掘, 大数据现在那么热. 这个问题如果是问技术, 网上随便一搜各类文章一大把. 我只说下我觉得最重要的两点: 1. 对数据不说狂热喜爱, 但不能讨厌. 如果是在大公司做, 你的岗位可能是真的24小时将会只和数据打交道, 没有业务, 没有管理, 除了数据什么都没有. 2. 从长远来看, 咨询顾问需要知道的一些东西也可以学起来.如今随着数据越来越收到人们的重视,数据分析师这一职位也越来越收到青睐,尤其是在北上广等一线城市,对数据分析师的更是呈现供不应求的局面,但想成为一名合格的数据分析师,却是一个不断累积沉淀的过程。1、首先,你必须具备相关的统计知识,大多数数据分析师岗位都会倾向于招数学专业出身的人,因为学数学的人基本都系统的学过数据的分析算法、或者说具备逻辑性很强,能快速的成长为一名数据分析师。2、数据处理能力,要想成为一名合格的数据分析师,必须具备基本的数据处理能力,如excel/spss或者r语言以及sas,掌握数据库的使用,能从数据库中调用数据,查询数据、导出数据,进而分析。3、业务理解能力,任何数据如果若脱离对实际情况的分析,那么这些分析将没有任何作用,只能是夸夸其谈。所以,合格的数据分析师,应该能把握分析能与市场或者产品,紧密联系,才能分析出有价值的都关系4、获取数据的能力,一名合格的数据分析师,应该能够从外界获取数据归为己用,市面上就有很多可以采集数据分软件,如火车头、集搜客gooseeker等都能轻松采集诸多数据,纳为己用。以上是我对如何成为一名数据分析师的一些理解,总之,数据分析师的路任重道远,需要坚持、付出、沉淀、才能真正成长为一名有价值的数据分析师
4,大数据分析学习什么内容好学吗
大数据分析的五个基本方面1,可视化分析大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。2,数据挖掘算法大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。3,预测性分析能力大数据的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。4,语义引擎大数据分析广泛应用于网络数据挖掘,可从用户的搜索关键词、标签关键词、或其他输入语义,分析,判断用户需求,从而实现更好的用户体验和广告匹配。5,数据质量和数据管理大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。 大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。如果你指的是大数据分析师岗位,那么不需要学习hadoop、spark等与大数据架构师相关的知识,何况这些知识体量很大学习流程长,楼上说的是有些误导性的。而且该岗位对编程能力要求较低,一般用的不是java而更多是r或python。一般需要数据分析师需要精通excel(注意不是会做表格这种低阶应用,而是要掌握数据透视表甚至vba)学习spss等常用统计分析软件,对数据库要有基本的认识,掌握sql语言等。具体需要哪些能力建议你针对想去的公司的招聘要求来学,只要肯花时间下功夫并不难学。不好对于大数据的学习,没有想象中的那么简单。首先在学习真正的大数据技术之前,你要熟练掌握一门编程语言,比如java等,在学习大数据期间你还会接触到其他的编程语言,比如说scala、python等编程语言,不过这些语言都是相通的,你掌握了一门编程语言其他的就很好学习了。大数据的学习需要掌握以下技术:hadoop、spark、storm等核心技术,如果去培训机构学习的话,一定要注意的是学习周期的分布,有的并不是真正的大数据课程,真正的大数据课程是用20-30%的部分讲解编程语言,剩下的就都是对大数据技术的学习,所以在学习之前还是要了解一些关于大数据的技术知识的。
5,数据分析师需要学习哪里内容
1、数学知识数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。而对于数据挖掘工程师,除了统计学以外,各类算法也需要熟练使用,对数学的要求是最高的。所以数据分析并非一定要数学能力非常好才能学习,只要看你想往哪个方向发展,数据分析也有偏“文”的一面,特别是女孩子,可以往文档写作这一方向发展。2、分析工具对于初级数据分析师,玩转excel是必须的,数据透视表和公式使用必须熟练,vba是加分。另外,还要学会一个统计分析工具,spss作为入门是比较好的。对于高级数据分析师,使用分析工具是核心能力,vba基本必备,spss/sas/r至少要熟练使用其中之一,其他分析工具(如matlab)视情况而定。对于数据挖掘工程师……嗯,会用用excel就行了,主要工作要靠写代码来解决呢。3、编程语言对于初级数据分析师,会写sql查询,有需要的话写写hadoop和hive查询,基本就ok了。对于高级数据分析师,除了sql以外,学习python是很有必要的,用来获取和处理数据都是事半功倍。当然其他编程语言也是可以的。对于数据挖掘工程师,hadoop得熟悉,python/java/c++至少得熟悉一门,shell得会用……总之编程语言绝对是数据挖掘工程师的最核心能力了。4、业务理解业务理解说是数据分析师所有工作的基础也不为过,数据的获取方案、指标的选取、乃至最终结论的洞察,都依赖于数据分析师对业务本身的理解。对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。业务能力是优秀数据分析师必备的,如果你之前对某一行业已经非常熟悉,再学习数据分析,是非常正确的做法。刚毕业没有行业经验也可以慢慢培养,无需担心。4、逻辑思维这项能力在我之前的文章中提的比较少,这次单独拿出来说一下。对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。对于数据挖掘工程师,逻辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。5、数