您好,欢迎访问一九零五行业门户网

磁集成技术及其在电力电子中的应用

功率磁性元件是所有电力电子装置中*的关键器件。它担负着磁能的传递、储存以及滤波和电气隔离等功能,其体积和重量一般占到整个电路的20%至30%,损耗约占总损耗的30%。同时,磁性元件的各参数对电路的性能影响很大,如变压器漏感对电压尖峰的影响,变压器原、副边绕组的耦合电容对隔离性能的影响。因此,磁性器件的研究对于减小电力电子装置的体积和重量、提高电压调制性能有十分重要的意义。
近年来,随着开关器件和软开关技术的发展,人们通常采用提高工作频率的办法实现开关电 源的小型化,但是受到磁性器件特性的限制,高频化的方法有一定局限性。因为提高工作频率,会使磁性器件的磁芯损耗显著增加,所以在高频工作时磁性器件的磁芯一般要降额使用,磁芯的工作磁密远小于其饱和磁密,限制了磁性器件体积的进一步减小。为了能进一步减小磁性器件的体积、重量和损耗,提高磁件性能,人们研究了磁集成技术,并将其应用于电力电子磁性器件的设计中。
2 磁集成技术
2.1 磁集成技术的发展现状
自从cuk次提出了磁件集成化[1,2]的思想后,磁集成的概念不断扩展,这一技术发展很快[3],已成为电力电子行业发展的一个趋势。近几年,随着电力电子技术高频磁技术的不断发展,磁集成技术已经发展成为电力电子技术的一个分支,国外很多研究人员致力于这方面的研究,但国内的研究和应用还处于起步阶段。
2.2 磁集成技术的定义和特点
集成磁件实际上包含两方面含义[4,5]:一是将多个磁性元件集成在一个磁芯结构上,充分利用各个磁件在具体电路拓扑中的电压、电流关系以及磁路拓扑中的磁通、磁势关系,实现多个磁件的集成,以减小体积,提高开关电源的功率密度、降低损耗、改善输出滤波效果(例如将两个或多个电感器绕制在一个磁芯上);二是将磁性元件与线路板结合(例如直接将磁件的绕组制造在线路板上,采用厚膜技术将磁芯和绕组制造在硅片上等)。本文主要讨论类问题。
在电力电子中,磁集成技术主要应用于开关电源和ups逆变器中,有以下优点:(1)减少开关电源中器件的数量;(2)使集成磁件的大工作磁密小于各分立磁件的磁密和,以减小磁件磁芯的截面积,从而减小磁件磁芯的体积和重量;(3)使集成磁件磁芯磁通的脉动量减小,从而使磁件的铁损耗减小,提高开关电源的效率和功率密度;(4)改善开关电源的性能,如减小开关电源输入和输出电流的纹波,提高开关电源的瞬态响应速度等。
3 集成磁件的设计与建模
3.1 集成磁件的设计步骤
由于所设计的集成磁件是用于特定电路,因此,不仅要在设计的过程中考虑特定电路的要求,设计完成后对集成磁件的分析也很重要。另外,集成方式的选择要综合考虑其对铁损和电流脉动的影响,以优化电路性能。
集成磁件的设计大致可分四步:
步由分立磁件变换器推导出多种集成磁件变换器;
第二步结合具体电路,对比分析多种磁集成方案,从中选出的;
第三步完成集成磁件的参数计算与设计;
第四步对磁集成变换器进行仿真及其硬件实现。
对于功率变换电路,磁性元件对其性能的提高有重要的作用。例如,在输出端增加电感或使各个电感有所耦合有利于减小电流纹波,但电感数量的增加往往相应增加了磁件的数量、体积和损耗。如果采用磁集成技术,电路拓扑中磁元件数量的增加并不一定意味着实际电路布置上磁结构所占体积和磁件损耗的增加。所以,在研究电路拓扑时,不仅要从电路拓扑方面考虑问题,还要注意将电路拓扑方案与磁件可能的集成结构方案综合在一起研究,达到磁件结构与电路结构的组合。
其它类似信息

推荐信息