您好,欢迎访问一九零五行业门户网

用 NumPy 在 Python 中处理数字

这篇文章讨论了安装 numpy,然后创建、读取和排序 numpy 数组。
numpy(即 numerical python)是一个库,它使得在 python 中对线性数列和矩阵进行统计和集合操作变得容易。我在 python 数据类型的笔记中介绍过,它比 python 的列表快几个数量级。numpy 在数据分析和科学计算中使用得相当频繁。
我将介绍安装 numpy,然后创建、读取和排序 numpy 数组。numpy 数组也被称为 ndarray,即 n 维数组的缩写。
安装 numpy使用 pip 安装 numpy 包非常简单,可以像安装其他软件包一样进行安装:
pip install numpy
安装了 numpy 包后,只需将其导入你的 python 文件中:
import numpy as np
将 numpy 以 np 之名导入是一个标准的惯例,但你可以不使用 np,而是使用你想要的任何其他别名。
为什么使用 numpy? 因为它比 python 列表要快好几个数量级当涉及到处理大量的数值时,numpy 比普通的 python 列表快几个数量级。为了看看它到底有多快,我首先测量在普通 python 列表上进行 min() 和 max() 操作的时间。
我将首先创建一个具有 999,999,999 项的 python 列表:
>>> my_list = range(1, 1000000000)>>> len(my_list)999999999
现在我将测量在这个列表中找到最小值的时间:
>>> start = time.time()>>> min(my_list)1>>> print('time elapsed in milliseconds: ' + str((time.time() - start) * 1000))time elapsed in milliseconds: 27007.00879096985
这花了大约 27,007 毫秒,也就是大约 27 秒。这是个很长的时间。现在我试着找出寻找最大值的时间:
>>> start = time.time()>>> max(my_list)999999999>>> print('time elapsed in milliseconds: ' + str((time.time() - start) * 1000))time elapsed in milliseconds: 28111.071348190308
这花了大约 28,111 毫秒,也就是大约 28 秒。
现在我试试用 numpy 找到最小值和最大值的时间:
>>> my_list = np.arange(1, 1000000000)>>> len(my_list)999999999>>> start = time.time()>>> my_list.min()1>>> print('time elapsed in milliseconds: ' + str((time.time() - start) * 1000))time elapsed in milliseconds: 1151.1778831481934>>>>>> start = time.time()>>> my_list.max()999999999>>> print('time elapsed in milliseconds: ' + str((time.time() - start) * 1000))time elapsed in milliseconds: 1114.8970127105713
找到最小值花了大约 1151 毫秒,找到最大值 1114 毫秒。这大约是 1 秒。
正如你所看到的,使用 numpy 可以将寻找一个大约有 10 亿个值的列表的最小值和最大值的时间 从大约 28 秒减少到 1 秒。这就是 numpy 的强大之处。
使用 python 列表创建 ndarray有几种方法可以在 numpy 中创建 ndarray。
你可以通过使用元素列表来创建一个 ndarray:
>>> my_ndarray = np.array([1, 2, 3, 4, 5])>>> print(my_ndarray)[1 2 3 4 5]
有了上面的 ndarray 定义,我将检查几件事。首先,上面定义的变量的类型是 numpy.ndarray。这是所有 numpy ndarray 的类型:
>>> type(my_ndarray)class 'numpy.ndarray'>
这里要注意的另一件事是 “形状shape”。ndarray 的形状是 ndarray 的每个维度的长度。你可以看到,my_ndarray 的形状是 (5,)。这意味着 my_ndarray 包含一个有 5 个元素的维度(轴)。
>>> np.shape(my_ndarray)(5,)
数组中的维数被称为它的 “秩rank”。所以上面的 ndarray 的秩是 1。
我将定义另一个 ndarray my_ndarray2 作为一个多维 ndarray。那么它的形状会是什么呢?请看下面:
>>> my_ndarray2 = np.array([(1, 2, 3), (4, 5, 6)])>>> np.shape(my_ndarray2)(2, 3)
这是一个秩为 2 的 ndarray。另一个要检查的属性是 dtype,也就是数据类型。检查我们的 ndarray 的 dtype 可以得到以下结果:
>>> my_ndarray.dtypedtype('int64')
int64 意味着我们的 ndarray 是由 64 位整数组成的。numpy 不能创建混合类型的 ndarray,必须只包含一种类型的元素。如果你定义了一个包含混合元素类型的 ndarray,numpy 会自动将所有的元素类型转换为可以包含所有元素的最高元素类型。
例如,创建一个 int 和 float 的混合序列将创建一个 float64 的 ndarray:
>>> my_ndarray2 = np.array([1, 2.0, 3])>>> print(my_ndarray2)[1. 2. 3.]>>> my_ndarray2.dtypedtype('float64')
另外,将其中一个元素设置为 string 将创建 dtype 等于  的字符串 ndarray,意味着我们的 ndarray 包含 unicode 字符串:
>>> my_ndarray2 = np.array([1, '2', 3])>>> print(my_ndarray2)['1' '2' '3']>>> my_ndarray2.dtypedtype(')
size 属性将显示我们的 ndarray 中存在的元素总数:
>>> my_ndarray = np.array([1, 2, 3, 4, 5])>>> my_ndarray.size5
使用 numpy 方法创建 ndarray如果你不想直接使用列表来创建 ndarray,还有几种可以用来创建它的 numpy 方法。
你可以使用 np.zeros() 来创建一个填满 0 的 ndarray。它需要一个“形状”作为参数,这是一个包含行数和列数的列表。它还可以接受一个可选的 dtype 参数,这是 ndarray 的数据类型:
>>> my_ndarray = np.zeros([2,3], dtype=int)>>> print(my_ndarray)[[0 0 0] [0 0 0]]
你可以使用 np. ones() 来创建一个填满 1 的 ndarray:
>>> my_ndarray = np.ones([2,3], dtype=int)>>> print(my_ndarray)[[1 1 1] [1 1 1]]
你可以使用 np.full() 来给 ndarray 填充一个特定的值:
>>> my_ndarray = np.full([2,3], 10, dtype=int)>>> print(my_ndarray)[[10 10 10] [10 10 10]]
你可以使用 np.eye() 来创建一个单位矩阵 / ndarray,这是一个沿主对角线都是 1 的正方形矩阵。正方形矩阵是一个行数和列数相同的矩阵:
>>> my_ndarray = np.eye(3, dtype=int)>>> print(my_ndarray)[[1 0 0] [0 1 0] [0 0 1]]
你可以使用 np.diag() 来创建一个沿对角线有指定数值的矩阵,而在矩阵的其他部分为 0:
>>> my_ndarray = np.diag([10, 20, 30, 40, 50])>>> print(my_ndarray)[[100000] [ 0 20000] [ 00 3000] [ 000 400] [ 0000 50]]
你可以使用 np.range() 来创建一个具有特定数值范围的 ndarray。它是通过指定一个整数的开始和结束(不包括)范围以及一个步长来创建的:
>>> my_ndarray = np.arange(1, 20, 3)>>> print(my_ndarray)[ 147 10 13 16 19]
读取 ndarrayndarray 的值可以使用索引、分片或布尔索引来读取。
使用索引读取 ndarray 的值在索引中,你可以使用 ndarray 的元素的整数索引来读取数值,就像你读取 python 列表一样。就像 python 列表一样,索引从 0 开始。
例如,在定义如下的 ndarray 中:
>>> my_ndarray = np.arange(1, 20, 3)
第四个值将是 my_ndarray[3],即 10。最后一个值是 my_ndarray[-1],即 19:
>>> my_ndarray = np.arange(1, 20, 3)>>> print(my_ndarray[0])1>>> print(my_ndarray[3])10>>> print(my_ndarray[-1])19>>> print(my_ndarray[5])16>>> print(my_ndarray[6])19
使用分片读取 ndarray你也可以使用分片来读取 ndarray 的块。分片的工作方式是用冒号(:)操作符指定一个开始索引和一个结束索引。然后,python 将获取该开始和结束索引之间的 ndarray 片断:
>>> print(my_ndarray[:])[ 147 10 13 16 19]>>> print(my_ndarray[2:4])[ 7 10]>>> print(my_ndarray[5:6])[16]>>> print(my_ndarray[6:7])[19]>>> print(my_ndarray[:-1])[ 147 10 13 16]>>> print(my_ndarray[-1:])[19]
分片创建了一个 ndarray 的引用(或视图)。这意味着,修改分片中的值也会改变原始 ndarray 的值。
比如说:
>>> my_ndarray[-1:] = 100>>> print(my_ndarray)[1 4 7101316 100]
对于秩超过 1 的 ndarray 的分片,可以使用 [行开始索引:行结束索引, 列开始索引:列结束索引] 语法:
>>> my_ndarray2 = np.array([(1, 2, 3), (4, 5, 6)])>>> print(my_ndarray2)[[1 2 3] [4 5 6]]>>> print(my_ndarray2[0:2,1:3])[[2 3] [5 6]]
使用布尔索引读取 ndarray 的方法读取 ndarray 的另一种方法是使用布尔索引。在这种方法中,你在方括号内指定一个过滤条件,然后返回符合该条件的 ndarray 的一个部分。
例如,为了获得一个 ndarray 中所有大于 5 的值,你可以指定布尔索引操作 my_ndarray[my_ndarray > 5]。这个操作将返回一个包含所有大于 5 的值的 ndarray:
>>> my_ndarray = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])>>> my_ndarray2 = my_ndarray[my_ndarray > 5]>>> print(my_ndarray2)[ 6789 10]
例如,为了获得一个 ndarray 中的所有偶数值,你可以使用如下的布尔索引操作:
>>> my_ndarray2 = my_ndarray[my_ndarray % 2 == 0]>>> print(my_ndarray2)[ 2468 10]
而要得到所有的奇数值,你可以用这个方法:
>>> my_ndarray2 = my_ndarray[my_ndarray % 2 == 1]>>> print(my_ndarray2)[1 3 5 7 9]
ndarray 的矢量和标量算术numpy 的 ndarray 允许进行矢量和标量算术操作。在矢量算术中,在两个 ndarray 之间进行一个元素的算术操作。在标量算术中,算术运算是在一个 ndarray 和一个常数标量值之间进行的。
如下的两个 ndarray:
>>> my_ndarray = np.array([1, 2, 3, 4, 5])>>> my_ndarray2 = np.array([6, 7, 8, 9, 10])
如果你将上述两个 ndarray 相加,就会产生一个两个 ndarray 的元素相加的新的 ndarray。例如,产生的 ndarray 的第一个元素将是原始 ndarray 的第一个元素相加的结果,以此类推:
>>> print(my_ndarray2 + my_ndarray)[ 79 11 13 15]
这里,7 是 1 和 6 的和,这是我相加的 ndarray 中的前两个元素。同样,15 是 5 和10 之和,是最后一个元素。
请看以下算术运算:
>>> print(my_ndarray2 - my_ndarray)[5 5 5 5 5]>>>>>> print(my_ndarray2 * my_ndarray)[ 6 14 24 36 50]>>>>>> print(my_ndarray2 / my_ndarray)[6. 3.52.66666667 2.25 2.]
在 ndarray 中加一个标量值也有类似的效果,标量值被添加到 ndarray 的所有元素中。这被称为“广播broadcasting”:
>>> print(my_ndarray + 10)[11 12 13 14 15]>>>>>> print(my_ndarray - 10)[-9 -8 -7 -6 -5]>>>>>> print(my_ndarray * 10)[10 20 30 40 50]>>>>>> print(my_ndarray / 10)[0.1 0.2 0.3 0.4 0.5]
ndarray 的排序有两种方法可以对 ndarray 进行原地或非原地排序。原地排序会对原始 ndarray 进行排序和修改,而非原地排序会返回排序后的 ndarray,但不会修改原始 ndarray。我将尝试这两个例子:
>>> my_ndarray = np.array([3, 1, 2, 5, 4])>>> my_ndarray.sort()>>> print(my_ndarray)[1 2 3 4 5]
正如你所看到的,sort() 方法对 ndarray 进行原地排序,并修改了原数组。
还有一个方法叫 np.sort(),它对数组进行非原地排序:
>>> my_ndarray = np.array([3, 1, 2, 5, 4])>>> print(np.sort(my_ndarray))[1 2 3 4 5]>>> print(my_ndarray)[3 1 2 5 4]
正如你所看到的,np.sort() 方法返回一个已排序的 ndarray,但没有修改它。
总结我已经介绍了很多关于 numpy 和 ndarray 的内容。我谈到了创建 ndarray,读取它们的不同方法,基本的向量和标量算术,以及排序。numpy 还有很多东西可以探索,包括像 union() 和 intersection()这样的集合操作,像 min() 和 max() 这样的统计操作,等等。
我希望我上面演示的例子是有用的。祝你在探索 numpy 时愉快。
以上就是用 numpy 在 python 中处理数字的详细内容。
其它类似信息

推荐信息