您好,欢迎访问一九零五行业门户网

固体所在高通量筛选高性能热电材料的研究方面取得新进展

近期,固体所张永胜研究员课题组在高通量筛选高性能half-heusler(hh)合金热电材料的研究方面取得新进展,相关研究为后续的实验提供了理论指导,也为理解热电性能物理机制提供了思路。相关研究结果发表在journal of physical chemistry c上。
热电材料可以将温差转化为电能,在缓解能源危机方面有着重要的应用价值,材料的热电转化效率通常用热电优值zt来表征。hh材料由于具有优良的电学性质、力学性能、热稳定性和矿藏丰富等优势,受到热电材料界的广泛关注。目前研究较多的是p型nbfesb和n型zrnisn,但是它们的高热导率阻碍了zt值的提高。因此,寻找具有高热电性能的母体hh材料就成为了当务之急。然而,目前仍有大量的hh体系的热电性能未被研究,且已有的高通量工作普遍采用了较简单的模型近似,因此,采用较为精确的方法来搜索高效hh母体材料和探索其背后的物理机制有重要意义。
为此,张永胜研究员课题组采用形变势理论高通量搜索了95种hh化合物。考虑了带隙、矿藏、无毒性等因素,最终筛选到了9种p型和6种n型hh候选体系,其电学性能(功率因子)优于目前广泛研究的nbfesb和zrnisn材料。通过研究发现其优良的电学性能是由于高能带简并度贡献seebeck系数,低形变势、轻带和高群速度协同贡献其高电导率。此外,通过热学性质计算发现两种化合物(liznsb和caznge)由于其强非简谐晶格振动导致较低的晶格热导率(在300 k下小于4 w m-1 k-1)。通过计算发现hh化合物的热电优值主要是由电学性质起主导作用,vcoge、nbcosi和tinige因其高功率因子和相对较低的热导率,使它们成为良好的热电材料候选。
该工作不仅为实验提供了良好的候选体系,同时为理解热电性能的物理机制提供思路。
以上研究得到了国家自然科学基金项目,中科院超算中心合肥分中心和宿州新材超算中心的资助。
图1.高通量搜索比nbfesb(zrnisn)电学性能更好的p(n)型母体hh候选材料的流程图。
图2.900 k下理论计算的hh候选材料的zt值。红线和紫线分别代表理论计算p型nbfesb和n型zrnisn的zt值。
其它类似信息

推荐信息