【原文:http://blog.csdn.net/firefight/article/details/6400060】 为了学习opencv svm分类器, 参考网上的 利用svm解决2维空间向量的分类问题 实现并改为c代码,仅供参考 环境:opencv2.2 vs2008 步骤: 1,生成随机的点,并按一定的空间分布将其归类 2,
【原文:http://blog.csdn.net/firefight/article/details/6400060】
为了学习opencv svm分类器, 参考网上的利用svm解决2维空间向量的分类问题实现并改为c++代码,仅供参考
环境:opencv2.2 + vs2008
步骤:
1,生成随机的点,并按一定的空间分布将其归类
2,创建svm并利用随机点样本进行训练
3,将整个空间按svm分类结果进行划分,并显示支持向量
[cpp] view plaincopy
#include stdafx.h #include void drawcross(mat &img, point center, scalar color) { int col = center.x > 2 ? center.x : 2; int row = center.y> 2 ? center.y : 2; line(img, point(col -2, row - 2), point(col + 2, row + 2), color); line(img, point(col + 2, row - 2), point(col - 2, row + 2), color); } int newsvmtest(int rows, int cols, int testcount) { if(testcount > rows * cols) return 0; mat img = mat::zeros(rows, cols, cv_8uc3); mat testpoint = mat::zeros(rows, cols, cv_8uc1); mat data = mat::zeros(testcount, 2, cv_32fc1); mat res = mat::zeros(testcount, 1, cv_32sc1); //create random test points for (int i= 0; i { int row = rand() % rows; int col = rand() % cols; if(testpoint.atchar>(row, col) == 0) { testpoint.atchar>(row, col) = 1; data.atfloat>(i, 0) = float (col) / cols; data.atfloat>(i, 1) = float (row) / rows; } else { i--; continue; } if (row > ( 50 * cos(col * cv_pi/ 100) + 200) ) { drawcross(img, point(col, row), cv_rgb(255, 0, 0)); res.atint>(i, 0) = 1; } else { if (col > 200) { drawcross(img, point(col, row), cv_rgb(0, 255, 0)); res.atint>(i, 0) = 2; } else { drawcross(img, point(col, row), cv_rgb(0, 0, 255)); res.atint>(i, 0) = 3; } } } //show test points imshow(dst, img); waitkey(0); /////////////start svm trainning////////////////// cvsvm svm = cvsvm(); cvsvmparams param; cvtermcriteria criteria; criteria= cvtermcriteria(cv_termcrit_eps, 1000, flt_epsilon); /* svm种类:cvsvm::c_svc
kernel的种类:cvsvm::rbf
degree:10.0(此次不使用)
gamma:8.0
coef0:1.0(此次不使用)
c:10.0
nu:0.5(此次不使用)
p:0.1(此次不使用)
然后对训练数据正规化处理,并放在cvmat型的数组里。*/
param= cvsvmparams (cvsvm::c_svc, cvsvm::rbf, 10.0, 8.0, 1.0, 10.0, 0.5, 0.1, null, criteria); svm.train(data, res, mat(), mat(), param); for (int i= 0; i { for (int j= 0; j { mat m = mat::zeros(1, 2, cv_32fc1); m.atfloat>(0,0) = float (j) / cols; m.atfloat>(0,1) = float (i) / rows; float ret = 0.0; ret = svm.predict(m); scalar rcolor; switch ((int) ret) { case 1: rcolor= cv_rgb(100, 0, 0); break; case 2: rcolor= cv_rgb(0, 100, 0); break; case 3: rcolor= cv_rgb(0, 0, 100); break; } line(img, point(j,i), point(j,i), rcolor); } } imshow(dst, img); waitkey(0); //show support vectors int sv_num= svm.get_support_vector_count(); for (int i= 0; i { const float* support = svm.get_support_vector(i); circle(img, point((int) (support[0] * cols), (int) (support[1] * rows)), 5, cv_rgb(200, 200, 200)); } imshow(dst, img); waitkey(0); return 0; } int main(int argc, char** argv) { return newsvmtest(400, 600, 100); }
学习样本:
分类:
支持向量: