1,如何做数据分析2,数据分析需要掌握哪些知识3,如何进行大数据分析及处理4,数据分析需要掌握些什么知识5,如何进行有效的数据分析1,如何做数据分析
不知道你想问的是哪方面的数据分析?数据分析有很多种,但是核心都是用数据指导业务。数据方面的技能,比如说数据清洗,机器学习等等,肯定要了解一些。还需要懂一些数据分析软件,还需要了解业务,最重要的是要把你的分析结果写成报告,数据可视化很重要可以先学习使用一些数据分析工具,简单的数据分析可以使用excel,复杂的可以使用spss、sas、matlab、sql server等分析工具。 做好数据分析的前提是要收集有效的原始数据,必要时可运用一些统计方法进行数据的有效性判定和剔除,然后利用数据分析工具寻找规律,比如利用excel中的筛选、排序、相关分析、透视表以及图表等工具来进行数据的分类,数据的变化趋势研究以及各组数据间的相关性分析等。
2,数据分析需要掌握哪些知识
数据分析师需要学习的内容1、统计学我看一些人推荐了不少统计学的专业书籍,很多人读《概率论与数理统计》,其他统计相关的内容也没怎么看过。对于互联网的数据分析来说,并不需要掌握太复杂的统计理论。所以只要按照本科教材,学一下统计学就够了。2、编程能力学会一门编程语言,会让你处理数据的效率大大提升。如果你只会在excel上复制粘贴,动手能力是不可能快的。我比较推荐python,上手比较快,写起来比较优雅。3、数据库数据分析师经常和数据库打交道,不掌握数据库的使用可不行。学会如何建表和使用sql语言进行数据处理,可以说是必不可少的技能。4、数据仓库许多人分不清楚数据库和数据仓库的差异,简单来说,数据仓库记录了所有历史数据,专门设计为方便数据分析人员高效使用的。5、数据分析方法对于互联网数据分析人员来说,可以看一下《精益创业》和《精益数据分析》,掌握常用的数据分析方法,然后再根据自己公司的产品调整,灵活组合。优秀的数据分析师需要具备这样一些素质:有扎实的 sql 基础,熟练使用 excel,有统计学基础,至少掌握一门数据挖掘语言(r、sas、python、spss),有良好的沟通和表达能力,做好不断学习的准备,有较强的数据敏感度和逻辑思维能力,深入了解业务,有管理者思维,能站在管理者的角度考虑问题。
3,如何进行大数据分析及处理
1. 可视化分析。大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。2.
数据挖掘算法。大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。3. 预测性分析。大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。4. 语义引擎。非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。5.数据质量和数据管理。大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。6大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。
4,数据分析需要掌握些什么知识
1)具有业务敏感度,反应迅速,能够良好沟通;2)具有数据分析和数据仓库建模的项目实践经验;3)3年及以上数据分析经验,有互联网产品、运营分析经验;4)熟悉r、sas、spss等统计分析软件,熟练运用python,熟练使用 sql、hive等;5)本科或以上学历,数学、统计、计算机、运筹学等相关专业;那么对于正在入门阶段的同学们应该如何正确把握自己的学习方向呢?从学科知识来看,数据分析涉及到一下的知识要点:(1)统计学:参数检验、非参检验、回归分析等(2)数学:线性代数、微积分等(3)社会学:主要是一些社会学量化统计的知识,如问卷调查与统计分析;还有就是一些社会学的知识,这些对于从事营销类的数据分析人员比较有帮助(4)经济金融:如果是从事这个行业的数据分析人员,经济金融知识是必须的,这里就不多说了1)数据分析报告类:microsoft office软件等,如果连excel表格基本的处理操作都不会,连ppt报告都不会做,那我只好说离数据分析的岗位还差的很远。现在的数据呈现不再单单只是表格的形式,而是更多需要以可视化图表去展示你的数据结果,因为数据可视化软件就不能少,bdp个人版、tabluea、echart等这些必备的(2)专业数据分析软件:常见的有诸如spss、sas、matlab等等,这些软件可以很好地帮助我们完成专业性的算法或模型分析,还有高级的python、r等。(3)数据库:hive、hadoop、impala等数据库相关的知识可以学习;(3)辅助工具:比如思维导图软件(如mindmanager、mindnode pro等)也可以很好地帮助我们整理分析思路。希望同学们谨记:理论知识+软件工具+数据思维=数据分析基础,最后要把这些数据分析基础运用到实际的工作业务中,好好理解业务逻辑,真正用数据分析驱动网站运营、业务管理,真正发挥数据的价值。
5,如何进行有效的数据分析
首先,我们要明确数据分析的概念和含义,清楚地理解什么是数据分析;什么是数据分析呢,浅层面讲就是通过数据,查找其中蕴含的能够反映现实状况的规律。专业一点讲:数据分析就是适当的统计分析方法对收集来的大量数据进行分析,将他们加以汇总、理解和消化,以求最大化的开发数据的功能,发挥数据的作用。那么,我们做数据 分析的目的是什么呢?事实上,数据分析就是为了提取有用的信息和形成结论而对数据加以详细的研究和概括总结的过程。数据分析可以分为:描述性数据分析、探索性数据分析、验证性数据分析工作中我们运用数据分析的作用有哪些?1、现状分析:就是企业运营状况的分析,主要是各项指标的监控以及日报、周报、月报等2、原因分析:需求分析,多数是针对运营中出现的问题进行剖析,找出出现问题的因素以便于解决问题3、预测分析:针对以后的运营情况做出分析报告,对公司以后的发展趋势做出有效的预测,对公司的发展目标和策略制定做出有力的支撑。最重要的一点:我们如何做数据分析呢,换一句话说就是如何进行数据分析,是怎样的流程?然后,我们来看数据分析的六部曲1、明确分析目的和思路:这一定很重要,你想通过数据分析得到什么,你想通过数据分析告诉别人什么,这是你做数据分析的首要问题,分析不能是漫无目的的,一定要明确思路,有目的性、有计划性的去做数据分析。找好角度、指标、以及分析逻辑尤为重要。2、数据收集,这里不做过多的说明,一般情况下,数据来源都会可靠有效。我们要做的只是把我们需求的数据get即可。3、数据处理:主要包括数据清洗、数据转化、数据提取、数据计算等方法,数据分析的前提是要保证数据质量,如果数据质量无法保证,分析出来的结果也没法得到有效的利用,甚至会对决策者造成误导的行为。4、数据分析:首先要明确数据处理和数据分析的区别:数据处理只是数据分析的基础,我们做数据处理就是为了保证数据形式合适,保证数据的一致性和有效性。5、数据展现:数据展现就是把数据分析的结果,用可视化的图标形式展现出来,用一种简单易懂的方式表达出你分析的观点6、撰写报告:数据分析报告其实就是对整个数据分析过程的一个总结与呈现,通过报告把数据分析的起因、过程、结果及建议完整的呈现出来,供决策者参考。付费内容限时免费查看回答你好,一探讨需求在开始分析数据或深入研究分析技术之前,与团队里的所有小伙伴一起坐下来,确定主要活动或战略目标是很关键的,需要从根本上了解哪些类型最有利于发展,或哪些数据对发展的前景最有帮助。提问有效的数据分析回答2确定问题一旦确定了核心目标,你应该考虑哪些问题需要被回答来帮助你完成你的目标。为了帮助提出正确的问题并确保数据有用,提出问题、寻解答案是必不可少的。3收集数据在为数据分析方法提供了真正的指导,并知道了需要回答哪些问题来获取可用信息中的最佳价值后,应该决定最有价值的数据源并开始收集,这是所有数据分析技术中最基础的一步。4设置kpi设置一系列关键绩效指标(kpi),这些指标可以在许多关键领域中跟踪,衡量和塑造您的进度。kpi对于定性研究中的数据分析方法和定量研究中的数据分析方法都是至关重要的,它对于督促自己及时完成数据分析目标有着重要作用。五忽略无用数据六统计分析更多3条要学习python、r、sas等编程工具;对数据仓库需要了解可以去九道门做些实验项目;如果你觉得还是难,那就采用最基础的学习路径,直接买mysql关系型数据库的书看,随便到网上去找个免费的mysql课程听;;分布式存储hdoop需要简单了解;云计算的技术作为了解就可以了;数据可视化不是很难,如果不要求特别美工的话,大家先理解图表,再研究研究仪表板,阿里云的quich bi及datav,百度的echarts都不错,主要是展示的业务结构需要规划;大数据技术:这个相对来说有些难度,